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Summary
This library, simDRIFT, provides for rapid and flexible Monte-Carlo simulations of Pulsed Gradient
Spin Echo (PGSE) Diffusion-Weighted Magnetic Resonance Imaging (DWI) experiments, which
we expect to be useful for DWI signal processing model development and validation purposes.
The primary focus of this library is forward simulations of molecular self-diffusion processes
within an ensemble of nuclear magnetic resonance (NMR) active nuclei (“spins”) residing
in complex, biophysical tissue systems. To achieve a large variety of tissue configurations,
simDRIFT provides support for 𝑛 fiber bundles (with user-defined radii, intrinsic diffusivities,
orientation angles, and densities) and 𝑚 cells (with user-defined radii and volume fractions).
simDrift is written in Python (Python Software Foundation (VanRossum & Drake, 2010)) and
supported by a Numba (Lam et al., 2015) backend. Thus, simDRIFT benefits from Numba’s
CUDA API, allowing the simulation of individual spin trajectories to be performed in parallel
on single Graphics Processing Unit (GPU) threads. The resulting performance gains support
simDRIFT’s aim to provide a customizable tool for the rapid prototyping of diffusion models,
ground-truth model validation, and in silico phantom production.

Statement of need
Monte Carlo simulations are particularly effective at generating synthetic diffusion MRI data
from complex, biophysically accurate imaging voxels with known ground-truth microstructural
parameters. Consequently, such simulations have proven useful for developing and validating
signal processing models (Chiang et al., 2014; Ye et al., 2020). Existing Monte Carlo simulators,
such as CAMINO, Disimpy, Realistic Microstructure Simulator, and others, rely on meshes to
discretize the computational domain (Ianuş et al., 2016; Kerkelä et al., 2020; Rafael-Patino et
al., 2020; Yeh et al., 2013). While this approach does allow for the representation of complex
and finely detailed microstructural features, given the coarse graining of such features (fiber
bending, etc.) observed at experimentally realistic diffusion times and voxel sizes (Novikov
et al., 2018), simDRIFT supplies a reasonable approximation to the relevant self-diffusion
processes by parametrizing fibers as narrow cylinders, or “sticks”, and cells as isotropic spheres,
or “balls” (Behrens et al., 2003). This way, users may readily simulate voxels induced by
multiple, oriented fiber bundles and cells without having to re-discretize the computational
domain with complex meshes, which scale in size according to the desired feature resolution
and size of the simulated image voxel (Panagiotaki et al., 2010).

simDRIFT’s superior computational performance represents an important advantage relative
to other available open-source software. Comparisons between simDRIFT and Disimpy, a
mesh-based, CUDA-enabled DWI forward simulator known to be faster than CAMINO (Kerkelä
et al., 2020), on identical image voxel geometries featuring a 5 𝜇m radius cell, reveals orders
of magnitude improved performance, particularly for large resident spin ensemble sizes. Thus,
simDRIFT is especially useful in a regime where the computational cost of existing software
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may be cumbersome or even prohibitive. In particular, simDRIFT is able to perform large-scale
simulations very quickly, therefore benefiting from favorable convergence properties with respect
to the diffusion weighted signal. In this context, using just desktop- or even laptop-level GPU
hardware, simDRIFT users are able to quickly and easily generate large amounts of synthetic
DWI data from a wide variety of voxel geometries.

Figure 1: Runtime comparison between simDRIFT and Disimpy, another DWI simulator that runs on the
GPU. These simulations were performed on a Windows 10 desktop with an Nvidia RTX 3090 GPU.

Therefore, the software encompassed by simDRIFT fulfills a presently-unmet need by allowing
for mesh-free Monte Carlo simulations of DWI that unify researchers’ needs for computational
performance and biophysical realism with easy-to-use and configurable open-source software.
simDRIFT was designed to be used by researchers of all disciplines and focuses on those who are
working with diffusion MRI. Multiple scientific publications that utilize this library are currently
in production. The wide customizability, high computational speed, and massively-parallel
design will provide avenues for improved model development pipelines and thorough inter-model
comparisons, among other potential applications.

Features
The library allows users to construct voxel geometries described by user-defined microstructural
and scanning parameters. Specifically, simDRIFT simulates the diffusion MRI signal generated
from the self-diffusion of water in an isotropic imaging voxel of length 𝐿voxel that contains
𝑛 ∈ [0, 4] distinct fiber bundles and 𝑚 ∈ [0, 2] distinct cells types, according to the user’s
selection of diffusion imaging protocol, diffusion time (Δ), time-step size d𝑡, and desired
free water diffusivity 𝐷𝐹𝑊. Within each simulated voxel, the user also has control over the
properties of each fiber/cell type. For each fiber bundle, users define the desired orientation
(via the angle 𝜃 formed between the bundle and the 𝑧 axis), intrinsic diffusivity (𝐷𝑖), axonal
radius (𝑅𝑖), and voxel volume fraction 𝑉𝑖/𝑉vox. For each cell type, users similarly define the
desired radius 𝑅𝑗 and voxel volume fraction 𝑉𝑗/𝑉vox. Examples of such voxel configurations
can be seen in 2.
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Figure 2: Example simulated spin trajectories from an imaging voxel featuring two fiber bundles (red,
blue) with various orientations (𝜃 = 0°, 30°, 60°, 90°), along with extra-fiber spins (purple) .

For each time step d𝑡 in the simulation, each tissue compartment’s resident spins are displaced
along a randomly chosen direction with a compartment-dependent distance d𝐿 = √6𝐷0d𝑡.
This process is repeated until the target diffusion time of Δ is reached. For diffusion times
shorter than the expected pre-exchange lifetime of intracellular water, it is safe to assume
no exchange between tissue microstructures. The inter-compartmental exchange of water
is computationally forbidden via within-timestep rejection of proposed moves beyond the
boundaries of each spin’s domain.
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