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Summary
Metagenomic analysis is largely concerned with untargeted genetic characterisation of the
taxonomic and functional composition of whole communities of organisms. Researchers ask
questions from metagenomic sequencing such as ‘who is present’ (what organisms are present),
and ‘what are they doing’ (which functions are they performing)? The nature of this field is
such that it intersects with ecology, medicine, statistics, and bioinformatics. Facilitated by the
development of Next-Generation Sequencing (NGS), the field often generates large datasets
consisting of many samples (hundreds) and many sequencing reads (tens of millions).

In part, due to the interdisciplinary nature of the field, but more importantly, due to the lack
of a gold standard, the task of accurately identifying the taxonomic origin of each sequencing
read is a popular and unresolved bioinformatics problem. Furthermore, the sizes of the datasets
present interesting challenges for computational efficiency, which may require trading off
accuracy for speed and memory use. Thus, there exists a diverse number of bioinformatics
tools in order to analyse metagenomic sequencing data and produce metagenomic profiles.
However, most of those tools have invented their own (often tabular) result formats, which
complicates downstream analysis and in particular comparison across tools.

TAXPASTA is a standalone command-line tool written in Python (Van Rossum & Drake Jr,
1995) that aims to standardise the diverse range of metagenomic profiler output formats to
simple tabular formats that are readily consumed in downstream applications. TAXPASTA
facilitates cross-comparison between taxonomic profiling tools without the need for external or
dedicated modules or plugins needed of other ‘dedicated’ metagenomic profile formats.

Statement of need
TAXPASTA is a Python package for standardising and aggregating metagenomic profiles
coming from a wide range of tools and databases (Figure 1). It was developed as part of the
nf-core/taxprofiler pipeline1 within the nf-core community (Ewels et al., 2020).

Across profilers, relative abundances can be reported in read counts, fractions, or percentages,
as well as any number of additional columns with extra information. Taxa can be recorded
using taxonomic identifiers, taxonomic names and/or in some cases semi-colon-separated
taxonomic ‘paths’ (lineages). These can also be formatted in different ways, from typical

1See nf-core/taxprofiler and at DOI 10.5281/zenodo.7728364.
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tables, to including ‘indented’ taxonomy trees such as in the Kraken (Wood et al., 2019) family
of profilers. Manually parsing these for comparison can be an arduous, error-prone task, with
researchers often reverting to custom R (R Core Team, 2023) and Python scripting, or even
manual correction in spreadsheet software.

With TAXPASTA, all of those formats can be converted into a single, standardised output, that,
at a minimum, contains taxonomic identifiers and their relative abundances as integer counts.
It can also be used to aggregate profiles across samples from the same profiler and merge them
into a single, standardised table. Having a singular format facilitates downstream analyses and
comparisons. TAXPASTA is not the first tool to attempt standardising metagenomic profiles,
but it is by far the most comprehensive in terms of supported profilers and output formats.

Figure 1: A visual summary of TAXPASTA’s capabilities. Supported profilers are listed on the left and
output formats on the right.

There exists an initiative to benchmark and compare profilers, as well as provide guidance
on their fitness for purpose; the Critical Assessment of Metagenome Interpretation (CAMI)
challenges (Meyer et al., 2022; Sczyrba et al., 2017). For that initiative, the Open-community
Profiling Assessment tooL (OPAL) (Meyer et al., 2019) was developed. Creating a community
wide assessment faced many of the challenges presented here, however, the chosen solution was
to mandate a single output format2 for all profilers participating in the challenge. Furthermore,
OPAL is an integrated tool performing assessment and visualisation, whereas TAXPASTA
follows the UNIX philosophy3 of doing one thing and doing it well. The BIOM format
(McDonald et al., 2012) was created with a similar intention of standardising a storage format
for microbiome analyses. However, transforming metagenomic profiles into that format is
entirely left up to the user. The format also is not easily loadable into spreadsheet software,
and external libraries are required for loading the format into data analysis languages such as
R. The QIIME™2 next-generation microbiome bioinformatics platform (Bolyen et al., 2019)
also maintains internally consistent formats for storing and processing metagenomic data that

2https://github.com/bioboxes/rfc/tree/master/data-format
3https://en.wikipedia.org/wiki/Unix_philosophy#Origin
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new tools can plug into, however this suite of software was originally designed for the analysis
of 16S rRNA amplicon sequencing data (Caporaso et al., 2010), and whole-genome, shotgun
metagenomic sequencing data is only supported via community plugins4. While some of the
taxonomic profilers also come with scripts to convert their output into another format and/or
merge multiple profiles into a single table, such as the Krakentools companion package (Lu et
al., 2022), these are often focused on the specific tool or family of tools. Thus, users would
have to become proficient in yet another piece of software per tool or family of tools for the
sake of consistent output files.

TAXPASTA supports reading a wide range of formats of primarily shotgun-metagenomic
profiling tools and formats, and it is designed to be used as a building block in metagenomic
analysis workflows. At the time of writing, it is able to read profiles from nine different profilers,
namely Bracken (Lu et al., 2017), Centrifuge (Kim et al., 2016), DIAMOND (Buchfink et
al., 2021), ganon (Piro et al., 2020), Kaiju (Menzel et al., 2016), Kraken2 (Wood et al.,
2019), KrakenUniq (Breitwieser et al., 2018), MALT/MEGAN6 (Huson et al., 2016; Vågene
et al., 2018), MetaPhlAn (Blanco-Míguez et al., 2023),and mOTUs (Ruscheweyh et al., 2022).
Supporting more profilers is already planned, and detailed documentation for community
contributions is provided5.

For maximum compatibility, TAXPASTA offers a wide range of familiar output file formats, such
as text-based, tabular formats (CSV6, TSV7), spreadsheets (ODS8, XLSX9), optimised binary
formats (Apache Arrow10 and Parquet11), and the HDF5-based12 BIOM format (McDonald et
al., 2012). We hope that this will let researchers plug and play TAXPASTA into their existing
analysis workflows in a wide range of settings.
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