
PySwarming: a research toolkit for Swarm Robotics
Emerson Martins de Andrade 1,2, Antonio Carlos Fernandes 1,2, and Joel
Sena Sales Junior 1,2

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 2 Ocean Engineering Program, Laboratory
of Waves and Current, LOC/COPPE/UFRJ, Rio de Janeiro, Brazil

DOI: 10.21105/joss.05647

Software
• Review
• Repository
• Archive

Editor: Adi Singh
Reviewers:

• @sea-bass
• @JHartzer

Submitted: 05 May 2023
Published: 26 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
When considering a system composed of a group of robots, swarm robotics is an approach that
can be used to coordinate this group. These swarms can be inspired or not by social insects
or other animal societies (Trianni, 2008), where basic behaviors are usually used to compose
complex tasks. These previously mentioned basic behaviors have been studied for a long time,
with applications, for example, to flocks, herds, and schools (Reynolds, 1987) and multi-robot
teams (T. Balch & Arkin, 1998). Here we introduce PySwarming, a tool that makes easy the
coordination of swarms and serves as a centerpiece, organizing different methods developed
in the swarm robotics field. Its flexibility (written in Python) and customizability (easily
customized by users) encourage interaction and scientific progress in the research community.

Introduction
Controlling a system composed of a group of robots can be a challenge, then, swarm robotics
is an approach that is widely used to coordinate this kind of system. Furthermore, the changes
that the field of swarm robotics has experienced in the last decade are unprecedented, with
various demonstrations showing the potential of this technology (Dorigo et al., 2021). Moreover,
it is important to note that swarm robotics is a subfield of multi-robot systems, itself a subfield
of mobile robot research (Dias et al., 2021). Additionally, these swarms may or may not be
inspired by social insects and other animal societies (Trianni, 2008), where basic behaviors
are typically used to compose complex tasks. The aforementioned behaviors have long been
studied and applied, for instance, to herds, flocks, schools, etc. (Reynolds, 1987; Toner &
Tu, 1998), self-driven particles (Vicsek et al., 1995), large collections of robots (Reif & Wang,
1999; Spears & Gordon, 1999), and multi-robot teams (T. Balch & Arkin, 1998).

Related Software Packages
For more than 20 years software for swarm robotics has been created, adapted, and tested
in different ways (Calderón-Arce et al., 2022). Software packages that allow the creation of
virtual scenarios and swarm robots with sensing, processing, and actuating capabilities are
crucial for the swarm robotics field. These software packages may be split into two categories:
(1) Swarm Simulators, which in general can simulate swarm robots with sensors and actuators,
and (2) Behavior Packages, which are composed of a bunch of ready-to-use collective behaviors.
Also, these software are written in different programming languages, which may be an initial
barrier for new users, depending on how much this language is difficult to learn or previous
knowledge by the user.

Concerning swarm robotics, (Calderón-Arce et al., 2022) presents a good review regarding
swarm robotics simulators, platforms, and applications. Therefore, for software packages we
have, for instance: (1) Buzz, which is a programming language for heterogeneous robot swarms

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

1

https://orcid.org/0000-0002-5023-8733
https://orcid.org/0000-0001-6578-1985
https://orcid.org/0000-0003-4563-1538
https://doi.org/10.21105/joss.05647
https://github.com/openjournals/joss-reviews/issues/5647
https://github.com/mrsonandrade/pyswarming
https://doi.org/10.5281/zenodo.8317286
https://www.linkedin.com/in/adisin/
https://orcid.org/0000-0002-6382-8441
https://github.com/sea-bass
https://github.com/JHartzer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

(C. Pinciroli et al., 2015). It offers primitives to define swarm behaviors and also single-robot
instructions; (2) ChoiRbot by (Testa et al., 2021), which is a toolbox for distributed cooperative
robotics based on the Robot Operating System (ROS) 2; (3) ROS2Swarm, which is a package
for applications of swarm robotics that provides a library of ready-to-use swarm behavioral
primitives (Kaiser et al., 2022); (4) ARGoS, which is a multi-physics robot simulator, able
to simulating large-scale swarms of robots (Carlo Pinciroli et al., 2011); (5) Stage Simulator,
which provides a virtual world populated by mobile robots and sensors, along with various
objects for the robots to sense and manipulate (Vaughan, 2008); (6) USARSim is a free 3D
simulator similar to Gazebo (Carpin et al., 2007); (7) The Swarm-bots project (Mondada et
al., 2004) is also a robotic simulator with swarm-intelligence-based control mechanisms, but it
is not publicly available; (8) and TeamBots is a Java-based collection of application programs
and Java packages for multiagent mobile robotics research (T. R. Balch, 1998). Table 1 shows
a summary of these software and their respective category and programming languages.

Software Category Programing Language
Buzz Behaviors package Buzz
ChoiRbot Behaviors package1 Python
ROS2Swarm Behaviors package2 Python
ARGoS Simulator C++
Stage Simulator C++
USARSim Simulator UnrealScript
Gazebo Simulator C++ and Python3

Swarm-bots Simulator and Behaviors package Not found
TeamBots Simulator and Behaviors package Java and C

Table 1: Summary of software packages with their respective categories and programming
languages.

Statement of Need
Concerning the Swarm Simulators, there is an enormous variety of excellent candidates, but it
is hard to compare each other since each one has been developed with different objectives (Erez
et al., 2015). Then, recommendations regarding this choice can be found in (Calderón-Arce
et al., 2022). Regarding Behavior Packages, their objective is to offer ready-to-use collective
behaviors, depending on the programming language in which they are implemented they can
be used inside different simulators. However, as can noticed from the previous section, in
general, different packages are written in different languages, imposing a possible barrier for
new users and the use of the package inside simulators written in a different programming
language. Moreover, important characteristics regarding the software are the possibility of
leveraging existing datasets, develop new algorithms, and quick prototyping, which are not
commonly found together.

PySwarming
Because of the lack of a cross-platform Behavior Package, we introduce PySwarming, which is a
tool that facilitates the coordination of swarms and serves as a centerpiece, organizing different
methods developed in the swarm robotics field. The package is written in Python, which is
one of the most accessible languages for learning and prototyping nowadays. Also, differently
from other Python-based packages such as ChoiRbot and ROS2Swarm that are designed
to work with ROS, the PySwarming package is implemented in a way that makes possible

1These packages were built to be used with ROS.
2These packages were built to be used with ROS.
3These are the programming languages that can be used in the interface ROS-Gazebo.

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

2

https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

cross-platform use. In addition, the PySwarming package comes with a simple ready-to-use
simulation feature, which helps lower the barrier for newcomers to the field.

Then, considering the challenge of organizing the various methods developed in the swarm
robotics field, PySwarming comes as a focal point, being flexible (written in Python) and
customizable (can be easily adapted by the user), increasing the interaction of the researcher
community and the advance of science. Also, PySwarming’s characteristic is to make the
implementations easy to read, keeping the syntax simple and closer to their sources. For
example, the target algorithm by (Zoss et al., 2017) is easily comparable with the mathematical
formula of their article.

PySwarming differs from Buzz and TeamBots mainly by the fact that it focuses on swarm
behaviors and it is written in Python, which has a thriving ecosystem of third-party libraries.
Also, implementations like ChoiRbot and ROS2SWARM require ROS to run, which makes
PySwarming more suitable for obtaining swarm behaviors through different platforms other
than ROS. Lastly, unlike ARGoS, Stage, and USARSim the main goal of PySwaming is not to
be a simulator itself, but a common place for different swarm coordination methods and other
tools.

Concerning the algorithms, PySwarming contains implementations from different authors,
for instance, Leaderless Coordination (Vicsek et al., 1995), Preferred Direction (Couzin et
al., 2005), Aggregation (Zoss et al., 2017), and so on. Also, these algorithms are based on
different design methods (Brambilla et al., 2013), for instance, a behavior-based design like
the attraction-repulsion algorithm (for details see (Spears et al., 2004)) can drive the robotic
swarming employing virtual forces, where the achieved configuration relies on minimizing the
system’s potential energy. More explanations regarding the algorithms and their use can be
found in the API and PySwarming documentation. Also, an example usage (aggregation +
heading consensus + repulsion) is described below.

Simulation Example
To start our example, we will define a set of four robots assuming we have access to their
positions and orientations. Initially, they are positioned far from each other, and also they have
different orientations, as can be observed in Figure 1.

Figure 1: The initial state of the four robots. Each colored circle is a robot and the arrows indicate their
orientation. The iteration number is the red text.

Then, using PySwarming we iterate over time by summing three different behaviors: (1)
Aggregation, (2) Heading Consensus, and (3) Repulsion. Each of these behaviors is applied to
each robot at each timestep. As expected, the robots will aggregate, adjust their headings,

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

3

https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

and repulse each other simultaneously over the simulation. The intermediate and final results
are shown in Figure 2.

Figure 2: Intermediate (left) and final (right) state of the four robots. The gray path is the plot of the
last 30 iterations of each robot.

The above simulation can be done by using other PySwarming behaviors, such as Attraction
and Alignment, with just a few lines of code, which demonstrates the simplicity of PySwarming.
Finally, the code for this simulation can be found in our examples directory.

How to create a new behavior and extend the package
To show PySwarming’s flexibility and customizability here we illustrate a practical example.
Then, imagine that we want to create a flocking behavior. Based on the literature it is known
that the classical “flocking”model is composed of three terms: (1) aggregation, (2) avoidance,
and (3) alignment (Zoss et al., 2017). As we have all these previous behaviors implemented in
PySwarming, you can simply do:

importing the swarming behaviors

import pyswarming.behaviors as pb

creating a new flocking function

def flocking(*args):

return pb.aggregation(*args) + pb.repulsion(*args) + pb.alignment(*args)

Then, we have created a new behavior based on existing ones. Where, *args are the arguments
that will be used by these functions, for details, please see the PySwarming documentation.
However, you have the freedom to extend the package and implement other models, add new
features, and so on, detailed instructions can be found here.

Algorithms covered
This library includes the following algorithms to be used in swarm robotics:

• Leaderless heading consensus: the collective performs heading consensus (Vicsek et al.,
1995);

• Inverse power: adjustable attraction and repulsion laws (Reif & Wang, 1999);
• Spring: allows the robots to maintain a desired distance between them (Reif & Wang,

1999);
• Force law: mimics the gravitational force (Spears & Gordon, 1999);
• Repulsive force: makes the individuals repulse each other (Helbing & Vicsek, 2000);

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

4

https://github.com/mrsonandrade/pyswarming/tree/main/examples
https://pyswarming.readthedocs.io/en/latest/Contribution.html
https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

• Body force: introduces a body force that considers the radii of the robots (Helbing &
Vicsek, 2000);

• Inter robot spacing: allows the robots to maintain a desired distance between them
(Leonard & Fiorelli, 2001);

• Dissipative: a dissipative force that reduces the “energy” of the robots (Leonard &
Fiorelli, 2001);

• Leader Following: the collective performs heading consensus with a leader (Jadbabaie et
al., 2003);

• Collision Avoidance: the robot stays away from neighbors in the vicinity (Couzin et al.,
2005);

• Attraction and Alignment: the robot becomes attracted and aligned (Couzin et al.,
2005);

• Preferred Direction: the robot has a preference to move toward a preset direction
(Couzin et al., 2005);

• Lennard-Jones: allows the formation of lattices (Carlo Pinciroli et al., 2008);
• Virtual viscosity: a viscous force that reduces the “oscillation” of the robots (Carlo

Pinciroli et al., 2008);
• Modified Attraction and Alignment: the robot becomes attracted and aligned by

considering a “social importance” factor (Freeman & Biro, 2009);
• Heading Consensus: the collective performs heading consensus (Chamanbaz et al., 2017);
• Perimeter Defense: the robots maximize the perimeter covered in an unknown environ-

ment (Chamanbaz et al., 2017);
• Environment exploration: provides spatial coverage (Chamanbaz et al., 2017);
• Aggregation: makes all the individuals aggregate collectively (Zoss et al., 2017);
• Alignment: the collective performs heading consensus (Zoss et al., 2017);
• Geofencing: attract the robots towards area A (Zoss et al., 2017);
• Repulsion: makes all the individuals repulse collectively (Zoss et al., 2017);
• Target: the robot goes to a specific target location (Zoss et al., 2017);
• Area coverage: using the Geofencing and Repulsion algorithms (Zoss et al., 2017);
• Collective navigation: using the Target and Repulsion algorithms (Zoss et al., 2017);
• Flocking: using the Aggregation, Repulsion and Alignment algorithms (Zoss et al., 2017);

Conclusion
Presented in this work is PySwarming, a package that facilitates the coordination of swarms
and serves as a centerpiece, organizing different methods developed in the swarm robotics field.
This package provides ready-to-use collective behaviors implementations based on the work of
different authors. As shown through the examples, the fact that it is written in Python makes
it more flexible and easily customizable, allowing quick prototyping. Therefore, PySwarming
fills an important space, regarding the organization of the different swarming robotics methods
developed over the last decade, and all the characteristics of the package confer a lower barrier
for newcomers to the field, which helps to increase the interaction of the researcher community
and the advancement of science.

Acknowledgements
The authors would like to thank the Human Resources Program from the National Agency
of Oil, Gas and Bio Combustibles – PRH-ANP for the financial support. This work was
supported by “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)”,
LOC/COPPE/UFRJ (Laboratory of Waves and Current - Federal University of Rio de Janeiro)
and the National Council for Scientific and Technological Development (CNPq), which are
gratefully acknowledged.

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

5

https://www.loc.ufrj.br/index.php/en/
https://www.loc.ufrj.br/index.php/en/
https://ufrj.br/en/
https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

References
Balch, T. R. (1998). Behavioral diversity in learning robot teams. Georgia Institute of

Technology.

Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation, 14(6), 926–939. https://doi.org/10.1109/
70.736776

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A re-
view from the swarm engineering perspective. Swarm Intell. https://doi.org/10.1007/
s11721-012-0075-2

Calderón-Arce, C., Brenes-Torres, J. C., & Solis-Ortega, R. (2022). Swarm robotics: Simulators,
platforms and applications review. Computation, 10(6), 80. https://doi.org/10.3390/
computation10060080

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., & Scrapper, C. (2007). USARSim: A robot
simulator for research and education. Proceedings 2007 IEEE International Conference on
Robotics and Automation, 1400–1405. https://doi.org/10.1109/ROBOT.2007.363180

Chamanbaz, M., Mateo, D., Zoss, B., Tokić, G., Wilhelm, E., Bouffanais, R., & al., et.
(2017). Swarm-enabling technology for multi-robot systems. Front Robot AI. https:
//doi.org/10.3389/frobt.2017.00012

Couzin, I., Krause, J., Franks, N., & Levin, S. (2005). Effective leadership and decision-making
in animal groups on the move. Nature. https://doi.org/10.1038/nature03236

Dias, P., Silva, M., Rocha Filho, G., Vargas, P., Cota, L., & Pessin, G. (2021). Swarm
robotics: A perspective on the latest reviewed concepts and applications. Sensors. https:
//doi.org/10.3390/s21062062

Dorigo, M., Theraulaz, G., & Trianni, V. (2021). Swarm robotics: Past, present, and future.
Proc IEEE. https://doi.org/10.1109/JPROC.2021.3072740

Erez, T., Tassa, Y., & Todorov, E. (2015). Simulation tools for model-based robotics:
Comparison of bullet, havok, mujoco, ode and physx. 2015 IEEE International Conference
on Robotics and Automation (ICRA), 4397–4404. https://doi.org/10.1109/ICRA.2015.
7139807

Freeman, R., & Biro, D. (2009). Modelling group navigation: Dominance and democracy in
homing pigeons. J Navigation. https://doi.org/10.1017/S0373463308005080

Helbing, F., D, & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature.
https://doi.org/10.1038/35035023

Jadbabaie, A., Jie, L., & Morse, A. (2003). Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans Automat Contr. https://doi.org/10.1109/
TAC.2003.812781

Kaiser, T., Begemann, M., Plattenteich, T., Schilling, L., Schildbach, G., & Hamann, H. (2022).
ROS2SWARM - a ROS 2 package for swarm robot behaviors. International Conference on
Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA46639.2022.9812417

Leonard, N., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control
of groups. IEEE Conference on Decision and Control. https://doi.org/10.1109/CDC.2001.
980728

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D., Deneubourg, J.-L.,
Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). SWARM-BOT: A new distributed
robotic concept. Autonomous Robots, 17, 193–221. https://doi.org/10.1023/B:AURO.
0000033972.50769.1c

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

6

https://doi.org/10.1109/70.736776
https://doi.org/10.1109/70.736776
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3390/computation10060080
https://doi.org/10.3390/computation10060080
https://doi.org/10.1109/ROBOT.2007.363180
https://doi.org/10.3389/frobt.2017.00012
https://doi.org/10.3389/frobt.2017.00012
https://doi.org/10.1038/nature03236
https://doi.org/10.3390/s21062062
https://doi.org/10.3390/s21062062
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1017/S0373463308005080
https://doi.org/10.1038/35035023
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10.1109/ICRA46639.2022.9812417
https://doi.org/10.1109/CDC.2001.980728
https://doi.org/10.1109/CDC.2001.980728
https://doi.org/10.1023/B:AURO.0000033972.50769.1c
https://doi.org/10.1023/B:AURO.0000033972.50769.1c
https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

Pinciroli, Carlo, Birattari, M., Tuci, E., Dorigo, M., Rey Zapatero, M. del, Vinko, T., & Izzo, D.
(2008). Lattice formation in space for a swarm of pico satellites. Ant Colony Optimization
and Swarm Intelligence. https://doi.org/10.1007/978-3-540-87527-7_36

Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2015). Buzz: An extensible programming lan-
guage for self-organizing heterogeneous robot swarms. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.2016.7759558

Pinciroli, Carlo, Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., & others. (2011). ARGoS: A modular, multi-engine
simulator for heterogeneous swarm robotics. 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 5027–5034. https://doi.org/10.1109/IROS.2011.6094829

Reif, J. H., & Wang, H. (1999). Social potential fields: A distributed behavioral control
for autonomous robots. Robotics and Autonomous Systems, 27(3), 171–194. https:
//doi.org/10.1016/S0921-8890(99)00004-4

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Proceed-
ings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
25–34. https://doi.org/10.1145/37402.37406

Spears, W., & Gordon, D. (1999). Using artificial physics to control agents. International
Conference on Information Intelligence and Systems. https://doi.org/10.1109/ICIIS.1999.
810278

Spears, W., Spears, D., Hamann, J., & Heil, R. (2004). Distributed, physics-based control of
swarms of vehicles. Autonomous Robots. https://doi.org/10.1023/B:AURO.0000033970.
96785.f2

Testa, A., Camisa, A., & Notarstefano, G. (2021). ChoiRbot: A ROS 2 toolbox for cooperative
robotics. IEEE Robot Autom Lett. https://doi.org/10.1109/LRA.2021.3061366

Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking.
Physical Review E, 58(4), 4828. https://doi.org/10.1103/PhysRevE.58.4828

Trianni, V. (2008). Evolutionary swarm robotics (Vol. 108). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-77612-3

Vaughan, R. (2008). Massively multi-robot simulation in stage. Swarm Intelligence, 2, 189–208.
https://doi.org/10.1007/s11721-008-0014-4

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of
phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226.
https://doi.org/10.1103/PhysRevLett.75.1226

Zoss, B., Mateo, D., Kuan, Y., Tokić, G., Chamanbaz, M., Goh, L., & al., et. (2017).
Distributed system of autonomous buoys for scalable deployment and monitoring of large
waterbodies. Auton Robot. https://doi.org/10.1007/s10514-018-9702-0

de Andrade et al. (2023). PySwarming: a research toolkit for Swarm Robotics. Journal of Open Source Software, 8(89), 5647. https:
//doi.org/10.21105/joss.05647.

7

https://doi.org/10.1007/978-3-540-87527-7_36
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/IROS.2011.6094829
https://doi.org/10.1016/S0921-8890(99)00004-4
https://doi.org/10.1016/S0921-8890(99)00004-4
https://doi.org/10.1145/37402.37406
https://doi.org/10.1109/ICIIS.1999.810278
https://doi.org/10.1109/ICIIS.1999.810278
https://doi.org/10.1023/B:AURO.0000033970.96785.f2
https://doi.org/10.1023/B:AURO.0000033970.96785.f2
https://doi.org/10.1109/LRA.2021.3061366
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/s11721-008-0014-4
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1007/s10514-018-9702-0
https://doi.org/10.21105/joss.05647
https://doi.org/10.21105/joss.05647

	Summary
	Introduction
	Related Software Packages
	Statement of Need

	PySwarming
	Simulation Example
	How to create a new behavior and extend the package
	Algorithms covered

	Conclusion
	Acknowledgements
	References

