
mpl-interactions: A Python Package for Interactive
Matplotlib Figures
Ian Hunt-Isaak 1, John Russell 2, and Doeke Hekstra 1,2

1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA,
USA 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA

DOI: 10.21105/joss.05651

Software
• Review
• Repository
• Archive

Editor: Antonia Mey
Reviewers:

• @flekschas
• @rgerum

Submitted: 31 May 2023
Published: 31 January 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Data exploration, model building and pedagogy all benefit from the ability to interactively
update elements in Matplotlib (Hunter, 2007) figures. mpl-interactions enables this by
making it easy for users to create Matplotlib figures in which the displayed data can be
dynamically controlled through widgets. These widgets can be automatically generated by
passing arguments such as arrays or shorthands (such as a tuple of numbers to generate
a slider) to modified pyplot functions. After creation of these widgets, mpl-interactions

updates plot elements without further user intervention. For ease of use, it adds these features
while otherwise staying close to the matplotlib.pyplot interface. mpl-interactions is built
such that parameters controlled by the generated widgets are easy to re-use for multiple plot
elements, while not interfering with static elements. This design allows for building any figure
that Matplotlib can produce, while adding interactivity to specific parts as desired.

Complete tutorials, examples, and API documentation are available on https://mpl-
interactions.readthedocs.io/en/stable/.

Statement of Need
The ability to interact dynamically with plots through widgets such as sliders can be a
powerful tool in the scientific process and in pedagogy. For instance, varying a parameter of
a mathematical model plotted on top of data helps to understand the relationship between
the model and the data. Similarly, exploratory data analysis can be enhanced by interactively
modifying aspects of the plot such as which points are displayed, or the threshold level of a
displayed image. mpl-interactions’ core goal is to make this aspect of interactive plotting
easier when using Matplotlib. Other interactive functionalities are out of scope as they are
provided by Matplotlib (e.g., zooming and panning), or by other third party packages (e.g.,
point selection).

Matplotlib provides mechanisms for updating elements (artists) in figures. However, the APIs
for these artists are not consistent and some are under- or undocumented. Furthermore, the
creation and positioning of the native Matplotlib widgets is nontrivial. While the ipywidgets

(Community, 2015) library makes widget creation and positioning easier, it is difficult to
integrate with Matplotlib in a performant manner. The easiest way to do so is to use the
ipywidgets’ interact() function, which automatically generates sliders and other widgets
to control arguments to arbitrary python functions. However, this can result in completely
regenerating the figure which can be slow. Alternatively, the user needs to remember the
specifics of how to update each individual artist. While Matplotlib and ipywidgets provide
the tools for controlling plots with widgets, the overhead of implementing such control can
overwhelm its utility. mpl-interactions fills this gap by making it easy for users to generate
widgets that dynamically control plots.

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

1

https://orcid.org/0000-0002-7591-083X
https://orcid.org/0009-0002-0402-2306
https://orcid.org/0000-0003-2332-9223
https://doi.org/10.21105/joss.05651
https://github.com/openjournals/joss-reviews/issues/5651
https://github.com/mpl-extensions/mpl-interactions
https://doi.org/10.5281/zenodo.10211397
Mey-research.org
https://orcid.org/0000-0001-7512-5252
https://github.com/flekschas
https://github.com/rgerum
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05651

There are a wide range of data visualization tools for Python, such as Altair (VanderPlas
et al., 2018), Holoviz (Rudiger et al., 2020), and Plotly (Inc., 2015), which provide rich
interactive plotting experiences. These tools often have overlapping functionality with mpl-

interactions and in some cases provide a greater range of interactive capabilities. However,
they may not be useful for a user already invested in using Matplotlib, or for a user for whom
Matplotlib is otherwise the best solution. For such users mpl-interactions adds functionality
to Matplotlib. To this end mpl-interactions closely follows the semantics of the Matplotlib
API, rather than creating a separate set of semantics, like the other mentioned libraries. Thus,
it enhances an analysis workflow that uses Matplotlib by enabling users to add interactive
features to a library they are already using. Otherwise user would need to use multiple plotting
libraries for different aspects of the data analysis process.

Overview
mpl-interactions provides several key features to make generating interactive figures simple.
The first is what arguments are accepted. While Matplotlib requires users to pass arrays
as arguments, mpl-interactions allows passing a function that returns numeric values.
Parameters to these functions are specified by adding extra keyword arguments (kwargs) to
the plotting function call. Then, mpl-interactions will generate the appropriate widgets for
the parameters and run the functions to generate the numerical data to plot. For example, to
plot a sinusoid and control its amplitude and frequency using sliders, a function returning the
y values is defined and passed as the y parameter to the plot function. The ranges of the A

and f parameters are defined as extra keyword arguments using tuples as a shorthand for what
widget to generate.

import mpl_interactions.ipyplot as iplt

import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots()

def sinusoid(x, A, f):

return A*np.sin(x * f)

x = np.linspace(0, np.pi, 100)

ctrls = iplt.plot(x, sinusoid, A=(1, 10), f = (.5, 2))

plt.show()

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

2

https://doi.org/10.21105/joss.05651

Figure 1: Multiple states of the figure resulting from moving the sliders after running above example in
jupyter lab.

A second important feature of mpl-interactions is that interactive plot components are not
isolated from each other. That is, the control widgets generated from one plotting call can
be re-used to control other components. In addition to showing the re-use of control widgets
this example demonstrates how Matplotlib styling arguments (such as vmin) can be controlled
through widgets.

N = 128

rng = np.random.default_rng(seed=1995)

im = rng.normal(size=(N,N))

fig, axs = plt.subplots(1, 2, figsize=(12, 5))

create interactive controls

ctrls = iplt.imshow(im, vmin_vmax=("r", im.min(), im.max()), ax=axs[0])

plot histogram of pixel intensities

by indexing the ctrls object it is possible to

re-use the the vmin and vmax created by imshow

to control the position of the axvlines

iplt.axvline(ctrls["vmin"], ax=axs[1], c="k")

iplt.axvline(ctrls["vmax"], ax=axs[1], c="k");

axs[1].hist(im.flatten(), bins="auto")

axs[1].set_title("Histogram of Pixel Intensities")

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

3

https://doi.org/10.21105/joss.05651

axs[1].set_xlabel('Pixel Intensity')

Figure 2: An imshow where the thresholds of the colorbar are controlled by the vmin_vmax range slider.
While the slider is created by the imshow call, its interactive parameters can be reused to control the
position of the veritcal lines on the histogram.

Finally, mpl-interactions allows the reuse of Python functions performing mathematical
operations in multiple parts of user code, rather than requiring users to write a plotting specific
version. For example, below the logistic_growth function is used for both curve fitting and
an interactive display in order to better understand the role of the model parameters.

%matplotlib ipympl

import matplotlib.pyplot as plt

import numpy as np

from scipy.optimize import curve_fit

import mpl_interactions.ipyplot as iplt

def logistic_growth(t, L, k, t0):

return L / (1 + np.exp(-k * (t - t0)))

create a synthetic dataset of logistic growth

rng = np.random.default_rng(seed=1995)

t_data = np.sort(rng.uniform(0, 10, size=50))

y_data = logistic_growth(

t_data, L=5, k=1, t0=1) + rng.normal(size=t_data.size, scale=0.1

)

You can use the `logistic_growth` function to curve_fit

popt, pcov = curve_fit(logistic_growth, t_data, y_data)

Now you can directly the same function to make

an interactive plot to better understand its parameters

fig, axs = plt.subplots(1, 2, sharey=True)

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

4

https://doi.org/10.21105/joss.05651

axs[0].plot(t_data, y_data, "o")

axs[0].plot(t_data, logistic_growth(t_data, *popt))

axs[0].set_title("Data + Fit")

axs[1].set_title("Interactive Exploration")

ctrls = iplt.plot(

np.linspace(0, 10),

logistic_growth,

L=(0.5, 10),

k=(0.1, 1),

t0=(0, 2.5),

ax=axs[1],

label="interactive",

)

axs[1].plot(t_data, logistic_growth(t_data, *popt), "--", label="fit")

plt.legend()

Figure 3: Generated figure and sliders after running above example in jupyter lab.

This framework makes it easy to generate complex interactive visualizations. It also enables
mpl-interactions to manage generating GIFs. Any parameter controlled through mpl-

interactions can be used to automatically generate a gif of the plot changing as a function
of that parameter (Animation Documentation). Thus, mpl-interactions can assist across
the data visualization process, from initial exploration to the creation of a final animated plot
as a GIF.

Acknowledgements
This work was supported by a National Defense Science and Engineering Graduate Fellowship
(FA9550-19-F-0008, to IHI), the George W. Merck Fund of the New York Community Trust
(award 338034, to DRH), and funds from Harvard University.

We thank Dr. K. Dalton from stimulating discussion, and Easun Arunachalam for feedback
on drafts of this paper. In addition, many users have contributed features and bug fixes.
Of particular note are Remco de Boer, and Samantha Hamilton who made contributions to
documentation and code, and documentation respectively. A full list of coding contributors
can be found here: https://github.com/mpl-extensions/mpl-interactions/graphs/contributors

Finally, many users have contributed in ways other than coding. For example by rais-
ing issues either with the package or documentation. These users are recognized here:

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

5

https://mpl-interactions.readthedocs.io/en/stable/examples/animations.html
https://doi.org/10.21105/joss.05651

https://github.com/mpl-extensions/mpl-interactions#contributors-

References
Community. (2015). Ipywidgets. https://github.com/jupyter-widgets/ipywidgets

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Inc., P. T. (2015). Collaborative data science. Plotly Technologies Inc. https://plot.ly

Rudiger, P., Signell, J., Bednar, J. A., Andrew, Stevens, J.-L., B, C., Samuels, J., Todd,
PEDOT, T., Oord, S. van den, Mease, J., Virshup, I., Corona, G., Hermes, D., H.,
C., & Graser, A. (2020). Holoviz/hvplot: Version 0.5.2 (Version v0.5.2). Zenodo.
https://doi.org/10.5281/zenodo.3634720

VanderPlas, J., Granger, B. E., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan,
A., Lees, E., Timofeev, I., Welsh, B., & Sievert, S. (2018). Altair: Interactive statistical
visualizations for python. Journal of Open Source Software, 3(32), 1057. https://doi.org/
10.21105/joss.01057

Hunt-Isaak et al. (2024). mpl-interactions: A Python Package for Interactive Matplotlib Figures. Journal of Open Source Software, 9(93), 5651.
https://doi.org/10.21105/joss.05651.

6

https://github.com/jupyter-widgets/ipywidgets
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://doi.org/10.5281/zenodo.3634720
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.05651

	Summary
	Statement of Need
	Overview
	Acknowledgements
	References

