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Summary

While traditional data mining techniques have been used extensively for discovering patterns in
databases, they are not always suitable for incorporating user-specified constraints. To overcome
this issue, new research has began connecting Data Mining to Constraint Programming (CP).
Such fertilization leads to a flexible way to tackle data mining tasks, such as itemset or
association rule mining. In this paper, we introduce a new library for solving itemset mining
problems with Choco-solver.

Constraint Programming (CP)

Constraint Programming (CP) is a powerful paradigm for solving combinatorial optimization
problems (Rossi et al., 2006). It provides a declarative approach to problem-solving by defining
a set of variables, domains, and constraints that capture the problem’s requirements. CP solvers
explore the space of possible solutions systematically, leveraging powerful search algorithms
and constraint propagation techniques to efficiently find valid solutions. The flexibility of CP
allows for modeling a wide range of problems, including scheduling (Baptiste et al., 2001),
resource allocation (Zhang et al., 2013), and planning (Van Beek & Chen, 1999). Its ability
to handle complex constraints, discrete variables, and global properties makes it particularly
suitable for tackling real-world problems. CP has demonstrated remarkable success in various
domains, offering a high-level modeling language and a diverse set of solving techniques. Its
integration with other optimization methods and technologies further enhances its applicability
and effectiveness. Overall, Constraint Programming is a valuable tool for addressing challenging
optimization problems, offering a powerful approach to problem modeling, solving, and decision
support.

Itemset Mining

Itemset mining is a fundamental data mining technique that aims to extract meaningful
associations and patterns from large datasets (Fournier-Viger et al., 2017). It involves the
identification of sets of items (called itemsets or patterns) that frequently co-occur or exhibit
significant relationships. By uncovering these itemsets, researchers gain valuable insights into
the underlying structure and dependencies within the data. Itemset mining finds applications
in various domains, including market basket analysis (Agrawal et al., 1994), bioinformatics
(Martinez et al., 2008), and social network analysis (Erlandsson et al., 2016).

CP and Pattern Mining

In recent years, CP has been proven to be effective for modelling and solving itemset mining
problems (Guns et al., 2011; Lazaar et al., 2016; Ugarte et al., 2017), and sequence mining
problems (Ghosh et al., 2022; Kadioglu et al., 2023; Wang et al., 2022; Wang & Kadioglu,
2022). The main advantage of using CP rather than specialised approaches for solving pattern
mining problems is that the user can easily add custom constraints without having to modify
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the underlying system. Multiple user-specified constraints have been proposed in the literature
to model and solve several pattern mining problems.

Statement of need

Having a generic prototypical approach that can be parameterized to declaratively and efficiently
discover patterns of interest using the available constraint solving tools is crucial to promote
the use of CP for itemset mining. Multiple constraints designed for different mining tasks
have been proposed in the recent years. However, few alternatives exist that bring all of these
constraints together in the same place. A user interested by using constraints in their own
project would have to implement them from scratch, which takes time and may lead to bugs.
To alleviate the burden of the user, we propose a new CP library that gathers multiple reference
constraints for itemset mining in the same place.

Features and Functionality
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Figure 1: Summary of constraints implemented with Choco-Mining

We propose a new CP library called Choco-Mining that is based on Choco-solver (Prud’homme
& Fages, 2022). The architecture of the library is illustrated in Figure 1. As we can see, multiple
constraints dedicated to different itemset mining tasks are available in the Choco-Mining library.
Each constraint takes as input a transactional database D and a vector of Boolean variables x
used for representing itemsets, where xz[i] represents the presence/absence of the item i in the
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searched itemset. These constraints are then used to define the problem at hand in terms of
constraint programming. The following constraints are available in Choco-Mining:

» CoverSizep(z, f) (Schaus et al., 2017): Given an integer variable f that represents
the frequency (noted freq) of an itemset x, the constraint ensures that f = freq(z).

s CoverClosurep(z) (Schaus et al., 2017): The constraint ensures that x is closed w.r.t.
the frequency, i.e., 2y D z : freq(z) = freq(y).

» AdequateClosurep, y,(z) (Vernerey et al., 2022): Given a set of measures M, the
constraint ensures that z is closed w.r.t. M, i.e., 7 y D x such that for all m € M :
m(z) = m(y).

» FrequentSubsp (x) (M. Belaid et al.,, 2019): Given a frequency threshold s, the
constraint ensures that all the subsets of x are frequent, i.e., Vy C z : freq(y) > s.

= InfrequentSupersp ,(x) (M. Belaid et al., 2019): Given a frequency threshold s, the
constraint ensures that all the supersets of x are infrequent, i.e.,, Vy D z : freq(y) < s.

= Generatorp(x) (M.-B. Belaid et al., 2019): The constraint ensures that x is a generator,
e, By Cx: freq(y) = freq(x).

» ClosedDiversityp 4 ; s(x) (Hien et al., 2020): Given a history of itemsets 7, a
diversity threshold j and a minimum frequency threshold s, the constraint ensures that x
is a diverse itemset (i.e., A y € K : jaccard(x,y) > j), = is closed w.r.t. the frequency
and freq(z) > s.

We can model different problems using these constraints. Figure 1 shows examples of mining
tasks (in blue) with the constraints (in red) involved in their modelling:

= Frequent ltemset Mining: Given a threshold s, find all the itemsets z such that freq(z) >
s.

= Closed Itemset Mining: Given a threshold s, find all the itemsets x such that freq(z) > s
and Ay Dz : freq(z) = freq(y).

= Skypattern Mining: Given a set of measures M, find all the itemsets x such that
there exists no other itemset y that dominates z. We say that y dominates z iff
VméeM:m(y) >m(z) and Im € M : m(y) > m(z).

= Maximal Frequent Itemset Mining: Given a threshold s, find all the itemsets x such that
freq(zx) > sand Vy D x: freq(y) < s.

= Minimal Infrequent Itemset Mining: Given a threshold s, find all the itemsets = such
that freg(z) < sand V y C z: freq(y) > s.

» Generator Mining: Find all the itemsets = such that 2y C = : freq(y) = freq(x).

= Association Rule Mining: Find all the association rules x = y that respect the constraints
specified by the user.

= Diverse ltemset Mining: Given a diversity threshold j and a minimum frequency threshold
s, find all the diverse itemsets that are closed w.r.t. the frequency and such that

freq(z) > s.

Running example

We give below an example of CP encoding for the Closed Itemset Mining problem using our
library Choco-Mining.

// Read the transactional database

TransactionalDatabase database = new DatReader("data/contextPasquier99.dat").read();
// Create the Choco model

Model model = new Model("Closed Itemset Mining");

/* Array of Boolean variables where x[i] == 1 represents

the fact that i belongs to the itemset */

BoolVar[] x = model.boolVarArray("x", database.getNbItems());

/* Integer variable that represents the frequency of x

with the bounds [1, nbTransactions] */
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IntVar freq = model.intVar("freq", 1, database.getNbTransactions());
// Integer variable that represents the length of x with the bounds [1, nbItems]
IntVar length = model.intVar("length", 1, database.getNbItems());
// Ensures that length = sum(x)
model.sum(x, "=", length).post();
// Ensures that freq = frequency(x)
ConstraintFactory.coverSize(database, freq, x).post();
// Ensures that x is a closed itemset
ConstraintFactory.coverClosure(database, x).post();
Solver solver = model.getSolver();
// Variable heuristic : select item i such that freq(x U i) is minimal
// Value heuristic : instantiate it first to 0
solver.setSearch(Search. intVarSearch(
new MinCov(model, database),
new IntDomainMin(),
X
));
// Create a list to store all the closed itemsets
List<Pattern> closedPatterns = new LinkedList<>();
while (solver.solve()) {
int[] itemset = IntStream.range(0, x.length)
filter(i -> x[i1].getValue() == 1)
.map(i -> database.getItems()[1])
.toArray();
// Add the closed itemset with its frequency to the list
closedPatterns.add(new Pattern(itemset, new int[]{freq.getValue()}));
}
System.out.println("List of closed itemsets for the dataset contextPasquier99:");
// Print all the closed itemsets with their frequency
for (Pattern closed : closedPatterns) {
System.out.println(Arrays.toString(closed.getItems()) +
", freq=" + closed.getMeasures()[0]);

}

The goal is to find all the closed itemsets with a minimum frequency of 1. We start by reading
the transactional database using the method read() of the DatReader instance. Then, we
create a model with Choco-solver. Variables freq and length are created to store respectively
the frequency and the length of the itemset. A boolean array of variables x represents the
itemset, where x[1] = 1 indicates that item i belongs to the itemset. Finally, we post three
constraints:

= model.sum(x, "=", length).post(): ensures that length = > x.
= ConstraintFactory.coverSize(database, freq, x).post(): ensures that freq =
fregq(z).

= ConstraintFactory.coverClosure(database, x).post(): ensures that x is closed
w.r.t. the frequency.

After finding all the solutions, we print them to the user.
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