The Journal of Open Source Software

DOI: 10.21105/joss.05654

Software
= Review @@
= Repository @
= Archive &7

Editor: Daniel S. Katz &
Reviewers:

= @skadio

= QjgFages

Submitted: 09 July 2023
Published: 18 August 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

A Java Library for Itemset Mining with Choco-solver

1

Charles Vernerey © 'Y and Samir Loudni

1 TASC, IMT-Atlantique, LS2N-CNRS, Nantes, France § Corresponding author

Summary

While traditional data mining techniques have been used extensively for discovering patterns in
databases, they are not always suitable for incorporating user-specified constraints. To overcome
this issue, new research has began connecting Data Mining to Constraint Programming (CP).
Such fertilization leads to a flexible way to tackle data mining tasks, such as itemset or
association rule mining. In this paper, we introduce a new library for solving itemset mining
problems with Choco-solver.

Constraint Programming (CP)

Constraint Programming (CP) is a powerful paradigm for solving combinatorial optimization
problems (Rossi et al., 2006). It provides a declarative approach to problem-solving by defining
a set of variables, domains, and constraints that capture the problem’s requirements. CP solvers
explore the space of possible solutions systematically, leveraging powerful search algorithms
and constraint propagation techniques to efficiently find valid solutions. The flexibility of CP
allows for modeling a wide range of problems, including scheduling (Baptiste et al., 2001),
resource allocation (Zhang et al., 2013), and planning (Van Beek & Chen, 1999). Its ability
to handle complex constraints, discrete variables, and global properties makes it particularly
suitable for tackling real-world problems. CP has demonstrated remarkable success in various
domains, offering a high-level modeling language and a diverse set of solving techniques. Its
integration with other optimization methods and technologies further enhances its applicability
and effectiveness. Overall, Constraint Programming is a valuable tool for addressing challenging
optimization problems, offering a powerful approach to problem modeling, solving, and decision
support.

Itemset Mining

Itemset mining is a fundamental data mining technique that aims to extract meaningful
associations and patterns from large datasets (Fournier-Viger et al., 2017). It involves the
identification of sets of items (called itemsets or patterns) that frequently co-occur or exhibit
significant relationships. By uncovering these itemsets, researchers gain valuable insights into
the underlying structure and dependencies within the data. Itemset mining finds applications
in various domains, including market basket analysis (Agrawal et al., 1994), bioinformatics
(Martinez et al., 2008), and social network analysis (Erlandsson et al., 2016).

CP and Pattern Mining

In recent years, CP has been proven to be effective for modelling and solving itemset mining
problems (Guns et al., 2011; Lazaar et al., 2016; Ugarte et al., 2017), and sequence mining
problems (Ghosh et al., 2022; Kadioglu et al., 2023; Wang et al., 2022; Wang & Kadioglu,
2022). The main advantage of using CP rather than specialised approaches for solving pattern
mining problems is that the user can easily add custom constraints without having to modify

Vernerey, & Loudni. (2023). A Java Library for ltemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 1

//doi.org/10.21105/joss.05654.


https://orcid.org/0000-0002-2922-2833
https://orcid.org/0000-0001-6245-7661
https://doi.org/10.21105/joss.05654
https://github.com/openjournals/joss-reviews/issues/5654
https://gitlab.com/chaver/choco-mining
https://doi.org/10.5281/zenodo.8263971
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/skadio
https://github.com/jgFages
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

The Journal of Open Source Software

the underlying system. Multiple user-specified constraints have been proposed in the literature
to model and solve several pattern mining problems.

Statement of need

Having a generic prototypical approach that can be parameterized to declaratively and efficiently
discover patterns of interest using the available constraint solving tools is crucial to promote
the use of CP for itemset mining. Multiple constraints designed for different mining tasks
have been proposed in the recent years. However, few alternatives exist that bring all of these
constraints together in the same place. A user interested by using constraints in their own
project would have to implement them from scratch, which takes time and may lead to bugs.
To alleviate the burden of the user, we propose a new CP library that gathers multiple reference
constraints for itemset mining in the same place.

Features and Functionality

Skypattern
Mining

AdequateClosure
InfrequentSupers

Maximal Frequent
Itemset Mining

Choco-Mining

Frequent Itemset
Mining

Closed Itemset
Mining

/

] Generator

Generator
Mining

Association Rule

Mining Legend

ClosedDiversity

Diverse Itemset
Mining

Figure 1: Summary of constraints implemented with Choco-Mining

We propose a new CP library called Choco-Mining that is based on Choco-solver (Prud’homme
& Fages, 2022). The architecture of the library is illustrated in Figure 1. As we can see, multiple
constraints dedicated to different itemset mining tasks are available in the Choco-Mining library.
Each constraint takes as input a transactional database D and a vector of Boolean variables x
used for representing itemsets, where xz[i] represents the presence/absence of the item i in the

Vernerey, & Loudni. (2023). A Java Library for ltemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 2
//doi.org/10.21105/joss.05654.


https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

The Journal of Open Source Software

searched itemset. These constraints are then used to define the problem at hand in terms of
constraint programming. The following constraints are available in Choco-Mining:

» CoverSizep(z, f) (Schaus et al., 2017): Given an integer variable f that represents
the frequency (noted freq) of an itemset x, the constraint ensures that f = freq(z).

s CoverClosurep(z) (Schaus et al., 2017): The constraint ensures that x is closed w.r.t.
the frequency, i.e., 2y D z : freq(z) = freq(y).

» AdequateClosurep, y,(z) (Vernerey et al., 2022): Given a set of measures M, the
constraint ensures that z is closed w.r.t. M, i.e., 7 y D x such that for all m € M :
m(z) = m(y).

» FrequentSubsp (x) (M. Belaid et al.,, 2019): Given a frequency threshold s, the
constraint ensures that all the subsets of x are frequent, i.e., Vy C z : freq(y) > s.

= InfrequentSupersp ,(x) (M. Belaid et al., 2019): Given a frequency threshold s, the
constraint ensures that all the supersets of x are infrequent, i.e.,, Vy D z : freq(y) < s.

= Generatorp(x) (M.-B. Belaid et al., 2019): The constraint ensures that x is a generator,
e, By Cx: freq(y) = freq(x).

» ClosedDiversityp 4 ; s(x) (Hien et al., 2020): Given a history of itemsets 7, a
diversity threshold j and a minimum frequency threshold s, the constraint ensures that x
is a diverse itemset (i.e., A y € K : jaccard(x,y) > j), = is closed w.r.t. the frequency
and freq(z) > s.

We can model different problems using these constraints. Figure 1 shows examples of mining
tasks (in blue) with the constraints (in red) involved in their modelling:

= Frequent ltemset Mining: Given a threshold s, find all the itemsets z such that freq(z) >
s.

= Closed Itemset Mining: Given a threshold s, find all the itemsets x such that freq(z) > s
and Ay Dz : freq(z) = freq(y).

= Skypattern Mining: Given a set of measures M, find all the itemsets x such that
there exists no other itemset y that dominates z. We say that y dominates z iff
VméeM:m(y) >m(z) and Im € M : m(y) > m(z).

= Maximal Frequent Itemset Mining: Given a threshold s, find all the itemsets x such that
freq(zx) > sand Vy D x: freq(y) < s.

= Minimal Infrequent Itemset Mining: Given a threshold s, find all the itemsets = such
that freg(z) < sand V y C z: freq(y) > s.

» Generator Mining: Find all the itemsets = such that 2y C = : freq(y) = freq(x).

= Association Rule Mining: Find all the association rules x = y that respect the constraints
specified by the user.

= Diverse ltemset Mining: Given a diversity threshold j and a minimum frequency threshold
s, find all the diverse itemsets that are closed w.r.t. the frequency and such that

freq(z) > s.

Running example

We give below an example of CP encoding for the Closed Itemset Mining problem using our
library Choco-Mining.

// Read the transactional database

TransactionalDatabase database = new DatReader("data/contextPasquier99.dat").read();
// Create the Choco model

Model model = new Model("Closed Itemset Mining");

/* Array of Boolean variables where x[i] == 1 represents

the fact that i belongs to the itemset */

BoolVar[] x = model.boolVarArray("x", database.getNbItems());

/* Integer variable that represents the frequency of x

with the bounds [1, nbTransactions] */

Vernerey, & Loudni. (2023). A Java Library for ltemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 3
//doi.org/10.21105/joss.05654.


https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

SS

The Journal of Open Source Software

IntVar freq = model.intVar("freq", 1, database.getNbTransactions());
// Integer variable that represents the length of x with the bounds [1, nbItems]
IntVar length = model.intVar("length", 1, database.getNbItems());
// Ensures that length = sum(x)
model.sum(x, "=", length).post();
// Ensures that freq = frequency(x)
ConstraintFactory.coverSize(database, freq, x).post();
// Ensures that x is a closed itemset
ConstraintFactory.coverClosure(database, x).post();
Solver solver = model.getSolver();
// Variable heuristic : select item i such that freq(x U i) is minimal
// Value heuristic : instantiate it first to 0
solver.setSearch(Search. intVarSearch(
new MinCov(model, database),
new IntDomainMin(),
X
));
// Create a list to store all the closed itemsets
List<Pattern> closedPatterns = new LinkedList<>();
while (solver.solve()) {
int[] itemset = IntStream.range(0, x.length)
filter(i -> x[i1].getValue() == 1)
.map(i -> database.getItems()[1])
.toArray();
// Add the closed itemset with its frequency to the list
closedPatterns.add(new Pattern(itemset, new int[]{freq.getValue()}));
}
System.out.println("List of closed itemsets for the dataset contextPasquier99:");
// Print all the closed itemsets with their frequency
for (Pattern closed : closedPatterns) {
System.out.println(Arrays.toString(closed.getItems()) +
", freq=" + closed.getMeasures()[0]);

}

The goal is to find all the closed itemsets with a minimum frequency of 1. We start by reading
the transactional database using the method read() of the DatReader instance. Then, we
create a model with Choco-solver. Variables freq and length are created to store respectively
the frequency and the length of the itemset. A boolean array of variables x represents the
itemset, where x[1] = 1 indicates that item i belongs to the itemset. Finally, we post three
constraints:

= model.sum(x, "=", length).post(): ensures that length = > x.
= ConstraintFactory.coverSize(database, freq, x).post(): ensures that freq =
fregq(z).

= ConstraintFactory.coverClosure(database, x).post(): ensures that x is closed
w.r.t. the frequency.

After finding all the solutions, we print them to the user.

Acknowledgements

This project was funded by IMT Atlantique.

Vernerey, & Loudni. (2023). A Java Library for ltemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 4
//doi.org/10.21105/joss.05654.


https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

The Journal of Open Source Software

References

Agrawal, R., Srikant, R., & others. (1994). Fast algorithms for mining association rules. Proc.
20th Int. Conf. Very Large Data Bases, VLDB, 1215, 487-499.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: Applying
constraint programming to scheduling problems (Vol. 39). Springer Science & Business
Media.

Belaid, M.-B., Bessiere, C., & Lazaar, N. (2019). Constraint programming for association
rules. Proceedings of the 2019 SIAM International Conference on Data Mining (SDM),
127-135. https://doi.org/10.1137/1.9781611975673.15

Belaid, M., Bessiere, C., & Lazaar, N. (2019). Constraint programming for mining borders of
frequent itemsets. Proceedings of IJCAI 2019, 1064-1070. https://doi.org/10.24963/ijcai.
2019/149

Erlandsson, F., Brédka, P., Borg, A., & Johnson, H. (2016). Finding influential users in social
media using association rule learning. Entropy, 18(5), 164. https://doi.org/10.3390/
e18050164

Fournier-Viger, P., Lin, J. C-W., Vo, B., Chi, T. T., Zhang, J., & Le, H. B. (2017). A survey
of itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(4), €1207. https://doi.org/10.1002/widm.1207

Ghosh, S., Yadav, S., Wang, X., Chakrabarty, B., & Kadioglu, S. (2022). Dichotomic pattern
mining integrated with constraint reasoning for digital behavior analysis. Frontiers in
Artificial Intelligence, 5, 868085. https://doi.org/10.3389 /frai.2022.868085

Guns, T., Nijssen, S., & De Raedt, L. (2011). ltemset mining: A constraint programming
perspective. Artificial Intelligence, 175(12), 1951-1983. https://doi.org/10.1016/j.artint.
2011.05.002

Hien, A., Loudni, S., Aribi, N., Lebbah, Y., Laghzaoui, M., Quali, A., & Zimmermann, A.
(2020). A relaxation-based approach for mining diverse closed patterns. Proceedings of
ECML PKDD 2020, 12457, 36-54. https://doi.org/10.1007/978-3-030-67658-2_3

Kadioglu, S., Wang, X., Hosseininasab, A., & Hoeve, W.-J. van. (2023). Seq2Pat: Sequence-
to-pattern generation to bridge pattern mining with machine learning. Al Magazine, 44(1),
54-66. https://doi.org/10.1002/aaai.12081

Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemiére, V., Bessiere, C., & Boizumault, P.
(2016). A global constraint for closed frequent pattern mining. Principles and Practice of
Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, Sep-
tember 5-9, 2016, Proceedings 22, 333-349. https://doi.org/10.1007/978-3-319-44953-1__
22

Martinez, R., Pasquier, N., & Pasquier, C. (2008). GenMiner: Mining non-redundant associa-
tion rules from integrated gene expression data and annotations. Bioinformatics, 24(22),
2643-2644. https://doi.org/10.1093/bioinformatics/btn490

Prud’homme, C., & Fages, J.-G. (2022). Choco-solver: A Java library for constraint program-
ming. Journal of Open Source Software, 7(78), 4708. https://doi.org/10.21105/joss.04708

Rossi, F., Van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Elsevier.

Schaus, P., Aoga, J. O. R, & Guns, T. (2017). CoverSize: A global constraint for frequency-
based itemset mining. Proceedings of the 23rd CP 2017, 529-546. https://doi.org/10.
1007/978-3-319-66158-2_ 34

Ugarte, W., Boizumault, P., Crémilleux, B., Lepailleur, A., Loudni, S., Plantevit, M., Raissi,
C., & Soulet, A. (2017). Skypattern mining: From pattern condensed representations

Vernerey, & Loudni. (2023). A Java Library for ltemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 5
//doi.org/10.21105/joss.05654.


https://doi.org/10.1137/1.9781611975673.15
https://doi.org/10.24963/ijcai.2019/149
https://doi.org/10.24963/ijcai.2019/149
https://doi.org/10.3390/e18050164
https://doi.org/10.3390/e18050164
https://doi.org/10.1002/widm.1207
https://doi.org/10.3389/frai.2022.868085
https://doi.org/10.1016/j.artint.2011.05.002
https://doi.org/10.1016/j.artint.2011.05.002
https://doi.org/10.1007/978-3-030-67658-2_3
https://doi.org/10.1002/aaai.12081
https://doi.org/10.1007/978-3-319-44953-1_22
https://doi.org/10.1007/978-3-319-44953-1_22
https://doi.org/10.1093/bioinformatics/btn490
https://doi.org/10.21105/joss.04708
https://doi.org/10.1007/978-3-319-66158-2_34
https://doi.org/10.1007/978-3-319-66158-2_34
https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

The Journal of Open Source Software

to dynamic constraint satisfaction problems. Artificial Intelligence, 244, 48-69. https:
//doi.org/10.1016/].artint.2015.04.003

Van Beek, P., & Chen, X. (1999). CPlan: A constraint programming approach to planning.
AAAI/IAAI, 585-590.

Vernerey, C., Loudni, S., Aribi, N., & Lebbah, Y. (2022). Threshold-free pattern mining
meets multi-objective optimization: Application to association rules. Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, 1880-1886.
https://doi.org/10.24963 /ijcai.2022/261

Wang, X., Hosseininasab, A., Colunga, P., Kadioglu, S., & Hoeve, W.-J. van. (2022).
Seq2Pat: Sequence-to-pattern generation for constraint-based sequential pattern mining.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(11), 12665-12671.
https://doi.org/10.1609/aaai.v36i11.21542

Wang, X., & Kadioglu, S. (2022). Dichotomic pattern mining with applications to intent
prediction from semi-structured clickstream datasets. The AAAI-22 Workshop on Knowledge
Discovery from Unstructured Data in Financial Services. https://arxiv.org/abs/2201.09178

Zhang, L., Zhuang, Y., & Zhu, W. (2013). Constraint programming based virtual cloud
resources allocation model. International Journal of Hybrid Information Technology, 6(6),
333-344. https://doi.org/10.14257 /ijhit.2013.6.6.30

Vernerey, & Loudni. (2023). A Java Library for Itemset Mining with Choco-solver. Journal of Open Source Software, 8(88), 5654. https: 6

//doi.org/10.21105 /joss.05654.


https://doi.org/10.1016/j.artint.2015.04.003
https://doi.org/10.1016/j.artint.2015.04.003
https://doi.org/10.24963/ijcai.2022/261
https://doi.org/10.1609/aaai.v36i11.21542
https://arxiv.org/abs/2201.09178
https://doi.org/10.14257/ijhit.2013.6.6.30
https://doi.org/10.21105/joss.05654
https://doi.org/10.21105/joss.05654

	Summary
	Constraint Programming (CP)
	Itemset Mining
	CP and Pattern Mining

	Statement of need
	Features and Functionality
	Running example
	Acknowledgements
	References

