
PYDAQ: Data Acquisition and Experimental Analysis
with Python
Samir Angelo Milani Martins 1,2¶

1 Department of Electrical Engineering at Federal University of São João del-Rei, Brazil. 2 GCoM -
Modeling and Control Group at Federal University of São João del-Rei, Brazil. ¶ Corresponding author

DOI: 10.21105/joss.05662

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @galessiorob
• @nataliakeles

Submitted: 10 March 2023
Published: 14 December 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
System identification is a relevant research topic that aims to find mathematical models
using acquired data. One of the main contributions is the work of Ljung (1999), which was
substantially developed over the years (Lacerda Junior et al., 2019; Martins & Aguirre, 2016).
Among system identification tools, SysIdentPy (Junior et al., 2020) uses Python in a very
straightforward way for system modeling through empirical data, while Narmax (Ayala et al.,
2020) promises to obtain models using R language.

As pointed out by Ljung (1999), experimental data are necessary for obtaining black-box
models, and this is exactly where PYDAQ find its place. PYDAQ is a Python tool which was
primarily developed for experiments with empirical data, either sending and/or acquiring data
using simple Graphical User Interfaces or command line, with few (or no) lines of code required,
using different solutions provided by the market (NIDAQ and Arduino). Even a reseacher with
no programming skills is able to use PYDAQ easily and quickly for data acquisition.

In what follows it will be shown how PYDAQ can be use by any scientist, its advantages and
features for quickly and effective data acquisition experiments, even if the scientist has no
programming skills.

Statement of need
Any scientist or student who needs to acquire data in an easy and quick way, in three line
of code (LOC), are the target audience of this manuscript/package. PYDAQ is a solution
that aims to allow the user to perform experiments from data acquisition to signals generation
using a Graphical User Interface.

Despite this, for advanced users, it is also possible to use PYDAQ through command line, as
shown in the documentation, allowing PYDAQ to be integrated in real time with well-known
modeling tools.

To contextualize the importance of PYDAQ, there are full papers dealing only with data
acquisition (Koerner et al., 2020; Yang, 2019). It should be clear at this point that data
acquisition is commonly only the first step in an empirical scientific procedure, such as in the
work of Ostrovskii et al. (2020). Therefore, this step should not take too much energy of a
researcher, since he/she needs to be full of energy to continue the research project.

Further, PYDAQ deals from different type of data acquisition cards, from simple and cheaper
Arduino boards up to NIDAQ devices, allowing the execution from simple to complex ex-
periments. Also, since PYDAQ can be also used as a command line tool, it can be easily
incorporated to be used in production along with any available mathematical tool, such as
SysIdentPy (Junior et al., 2020) or SciKitLearn (Pedregosa et al., 2011).

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

1

https://orcid.org/0000-0003-1702-8504
https://doi.org/10.21105/joss.05662
https://github.com/openjournals/joss-reviews/issues/5662
https://github.com/samirmartins/pydaq
https://doi.org/10.5281/zenodo.10377251
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://github.com/galessiorob
https://github.com/nataliakeles
https://creativecommons.org/licenses/by/4.0/
https://samirmartins.github.io/pydaq/
https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

In literature there are packages that deals with NIDAQ devices, such as the NSLS-II tools
(Koerner et al., 2020). However, they need several lines of codes in order to make a single
data acquisition, and works only with expensive and proprietary boards. Besides, as far as I
know, there is no Graphical User Interface open software that allows instantly and easily data
acquisition with Python, this being another feature of PYDAQ.

Because of the above-mentioned facts, PYDAQ can be used also to introduce new scientist
in the System Identification research area. Also, PYDAQ can be used in teaching, during
engineering courses and in low-cost laboratories’ implementation, once Arduino boards are
quite cheap and easy to find. Graphical User Interfaces also allows the user to be directly
connected with the subject, as explicitly said by Silva et al. (2018).

In what follows examples of how to use PYDAQ will be presented, as well as future research
topics. Further details can also be found in the documentation.

Examples
The fastest way to install PYDAQ is using pip:

pip install pydaq

Figure 1 and Figure 2 depict the Graphical User Interface developed for Data Acquisition using
Arduino or any NIDAQ board.

Figure 1: Data Acquisition through NIDAQ.

Figure 2: Data Acquisition through Arduino.

To start them, only three line of codes (LOC) are necessary, including one for importing
PYDAQ:

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

2

https://samirmartins.github.io/pydaq/
https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

from pydaq.get_data import Get_data

Class Get_data

g = Get_data()

Arduino or NIDAQ - Use ONE of the following lines

g.get_data_nidaq_gui() # For NIDAQ devices

g.get_data_arduino_gui() # For arduino boards

Similarly, to send data, only three LOC are required, as showed up in what follow:

from pydaq.send_data import Send_data

Class Send_data

s = Send_data()

Arduino or NIDAQ - Use ONE of the following lines

s.send_data_nidaq_gui()

s.send_data_arduino_gui()

If the user decides to save data, it will be saved in .dat format, located at the path defined in
the GUI (Desktop is the default path). Figure 3 shows an example of how data will be saved:
i) one file (time.dat) with the timestamp, in seconds, when each sample was acquired; ii) file
data.dat contains acquired values.

Figure 3: Example of acquired data.

Figure 4: GUI for sending data - Arduino.

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

3

https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

Figure 5: GUI for sending data - NIDAQ.

It should be emphasized that once this code is executed, a Graphical User Interface will manifest
on the screen, according to the board selected by the user, as shown in Figure 4 and Figure 5.

Options are straight-forward and ease to understand. For further details and to check how
to use the same functionality using a command line the reader are invited to check the
documentation.

It is noteworthy that any signal can be generated and applied to a physical system using
the presented GUI, being the used board the main constraint. Data can be either generated
manually or using a library (e.g., NumPy) to create signals as sine waves, PRBS (Pseudo-
Random Binary Signal) or other signal required to be a persistently exciting input, as necessary
for system identification (Billings, 2013; Ljung, 1999).

Step-response is a common way to test a system and acquire data, in order to find a model,
as well as system time constant and gain. To facilitate this procedure, a step-response GUI
was also created and can be seen in Figure 6 and Figure 7. To use them, user should type the
command:

from pydaq.step_response import Step_response

Class Step_Response

s = Step_response()

Arduino or NIDAQ - Use ONE of the following lines

s.step_response_nidaq_gui()

s.step_response_arduino_gui()

Figure 6: Step Response GUI - NIDAQ.

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

4

https://samirmartins.github.io/pydaq/
https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

Figure 7: Step Response GUI - Arduino.

Here the user can define when the step will be applied, as well as where data will be
saved. Figure 8 and Figure 9 show data that were empirically-acquired with PYDAQ. In the
figures the user will find labels, functionality (Sending Data/Data Acquisition/Step Response),
device/channel (for NIDAQ boards) or COM port used (for Arduino devices).

Figure 8: Data acquired using a NIDAQ board.

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

5

https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

Figure 9: Data generated by a step-response experiment.

Examples showed above shed light in some functionalities of PYDAQ. For further details and
for command line use, the reader is welcome to consult the full documentation.

Future Work
Future releases will include real-time and data-driven system identification using linear and
nonlinear approaches. Also, real-time model based controllers will be implemented through
PYDAQ. Saving data in an SQL server is a future feature, as well.

References
Ayala, H. V. H., Gritti, M. C., & Santos Coelho, L. dos. (2020). An R library for nonlinear

black-box system identification. SoftwareX, 11, 100495. https://doi.org/10.1016/j.softx.
2020.100495

Billings, S. A. (2013). Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains (p. 574). John Wiley & Sons. https://doi.org/10.
1002/9781118535561

Junior, W. R. L., Andrade, L. P. C. da, Oliveira, S. C. P., & Martins, S. A. M. (2020).
SysIdentPy: A Python package for system identification using NARMAX models. Journal
of Open Source Software, 5(54), 2384. https://doi.org/10.21105/joss.02384

Koerner, L. J., Caswell, T. A., Allan, D. B., & Campbell, S. I. (2020). A Python instrument
control and data acquisition suite for reproducible research. IEEE Transactions on Instrumen-
tation and Measurement, 69(4), 1698–1707. https://doi.org/10.1109/TIM.2019.2914711

Lacerda Junior, W. R., Martins, S. A. M., Nepomuceno, E. G., & Lacerda, M. J. (2019).
Control of hysteretic systems through an analytical inverse compensation based on a NARX
model. IEEE Access, 7, 98228–98237. https://doi.org/10.1109/access.2019.2926057

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

6

https://samirmartins.github.io/pydaq/
https://doi.org/10.1016/j.softx.2020.100495
https://doi.org/10.1016/j.softx.2020.100495
https://doi.org/10.1002/9781118535561
https://doi.org/10.1002/9781118535561
https://doi.org/10.21105/joss.02384
https://doi.org/10.1109/TIM.2019.2914711
https://doi.org/10.1109/access.2019.2926057
https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

Ljung, L. (1999). System identification: Theory for the user (2nd ed.). Prentice-Hall.
ISBN: 0-13-656695-2

Martins, S. A. M., & Aguirre, L. A. (2016). Sufficient conditions for rate-independent hysteresis
in autoregressive identified models. Mechanical Systems and Signal Processing, 75, 607–617.
https://doi.org/10.1016/j.ymssp.2015.12.031

Ostrovskii, V. Y., Nazare, T. E., Martins, S. A. M., & Nepomuceno, E. G. (2020). Temperature
as a chaotic circuit bifurcation parameter. 2020 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), 154–157. https://doi.
org/10.1109/EIConRus49466.2020.9038964

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830. https://doi.org/10.48550/arXiv.
1201.0490

Silva, P. H. O., Nardo, L. G., Martins, S. A. M., Nepomuceno, E. G., & Perc, M. (2018).
Graphical interface as a teaching aid for nonlinear dynamical systems. European Journal of
Physics, 39(6), 065105. https://doi.org/10.1088/1361-6404/aae35c

Yang, H. (2019). Design and implementation of data acquisition system based on Scrapy
technology. 2019 2nd International Conference on Safety Produce Informatization (IICSPI),
417–420. https://doi.org/10.1109/IICSPI48186.2019.9096044

Martins. (2023). PYDAQ: Data Acquisition and Experimental Analysis with Python. Journal of Open Source Software, 8(92), 5662. https:
//doi.org/10.21105/joss.05662.

7

https://doi.org/10.1016/j.ymssp.2015.12.031
https://doi.org/10.1109/EIConRus49466.2020.9038964
https://doi.org/10.1109/EIConRus49466.2020.9038964
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1088/1361-6404/aae35c
https://doi.org/10.1109/IICSPI48186.2019.9096044
https://doi.org/10.21105/joss.05662
https://doi.org/10.21105/joss.05662

	Summary
	Statement of need
	Examples
	Future Work
	References

