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Summary
Matrix factorization (MF) is a widely used approach to extract significant patterns in a data
matrix. MF is formalized as the approximation of a data matrix 𝑋 by the matrix product of
two factor matrices 𝑈 and 𝑉. Because this formalization has a large number of degrees of
freedom, some constraints are imposed on the solution. Non-negative matrix factorization
(NMF) imposing a non-negative solution for the factor matrices is a widely used algorithm to
decompose non-negative matrix data matrix. Due to the interpretability of its non-negativity
and the convenience of using decomposition results as clustering, there are many applications
of NMF in image processing, audio processing, and bioinformatics (Cichocki et al., 2009).

A discrete version of NMF can also be considered by imposing a binary solution (e.g., {0,1}) for
the factor matrices extracted from the data matrix and it is called binary matrix factorization
(BMF) (Z. Zhang et al., 2007). BMF is recently featured in some data science domains such as
market basket data, document-term data, Web click-stream data, DNA microarray expression
profiles, or protein-protein complex interaction networks.

Although BMF is becoming more used, in the current data analysis, further extensions are
required. For example, we may need a ternary solution (e.g., {0,1,2}) instead of a binary
one. Here, I call it ternary matrix factorization (TMF). TMF would contribute to the
extraction of ordered patterns, such as stages of disease severity. It is also possible to apply the
discretization to only one of the two factor matrices (𝑈 or 𝑉) and here I call it semi-binary matrix
factorization (SBMF) (Ma et al., 2021) or semi-ternary matrix factorization (STMF). This
extension contributes to the extraction of discrete patterns in continuous-valued matrix data.
Finally, there is a growing demand to extend MF to the simultaneous factorization of multiple
matrices or tensors (high-dimensional arrays) (Cichocki et al., 2009). Such heterogeneous data
sets are obtained when multiple measurements with a common data structure are performed
under different experimental conditions. Therefore, it is very convenient if discretization is
available to such heterogeneous data structures. To meet these requirements, I originally
developed dcTensor, which is an R/CRAN package to perform some discrete matrix/tensor
decomposition algorithms (https://cran.r-project.org/web/packages/dcTensor/index.html).

Statement of need
There are some tools to perform BMF such as Nimfa, libmf, recosystem, and Origami.jl but
there is no implementation to perform TMF, SBMF, STMF, or extensions of MF to multiple
matrices or tensor. For this reason, I originally implemented such discrete matrix/tensor
decomposition algorithms in R language, which is one of the popular open-source programming
languages.

dcTensor provides the matrix/tensor decomposition functions as follows:
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• MF against a matrix data
– dNMF: Discretized Non-negative Matrix Factorization (Cichocki et al., 2009; Lee &

Seung, 1999)
– dSVD: Discretized Singular Value Decomposition (Tsuyuzaki et al., 2020)

• MF against multiple matrices data
– dsiNMF: Discretized Simultaneous Non-negative Matrix Factorization (Badea, 2008;

Cichocki et al., 2009; Yilmaz, 2010; C.-C. Zhang S. Liu et al., 2012)
– djNMF: Discretized Joint Non-negative Matrix Factorization (Cichocki et al., 2009;

Yang & Michailidis, 2016)
– dPLS: Discretized Partial Least Squares (Arora, 2012)

• Tensor Decomposition
– dNTF: Discretized Non-negative CP Decomposition (Cichocki et al., 2007, 2009)
– dNTD: Discretized Non-negative Tucker Decomposition (Cichocki et al., 2009; Kim

& Choi, 2007)

Example
For the demonstration, here I show that SBMF can be easily performed on any machine where
R is pre-installed by using the following commands in R:

# Install package required (one per computer)

install.packages("dcTensor")

# Load required package (once per R instance)

library("dcTensor")

library("nnTensor")

library("fields")

# Load Toy data

data <- toyModel("NMF")

# Perform SBMF

set.seed(1234)

out <- dNMF(data, Bin_U=1E+6, J=5)

# Reconstruction of the data matrix

rec.data <- out$U %*% t(out$V)

# Visualization

layout(rbind(1:2, 3:4))

image.plot(data, main="Original Data", legend.mar=8, zlim=c(0, max(data)))

image.plot(rec.data, main="Reconstructed Data", legend.mar=8, zlim=c(0,max(data)))

hist(out$U, breaks=100)

hist(out$V, breaks=100)
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Figure 1: Semi-binary Matrix Factorization (SBMF).

In the top left of Figure 1, we can see that the demo data has five significant patterns as
blocks. In the top right of Figure 1, we can see that the reconstructed data, which is the
matrix product of the factor matrices 𝑈 and 𝑉, also has the same patterns and this means the
optimization of SBMF is properly converged. In the bottom left of Figure 1, we can see that
𝑈 is binary ({0,1}), but 𝑉 is not (the bottom right of Figure 1), which means the solution
is semi-binary. This solution is imposed by setting a large value against Bin_U argument in
dNMF function, which is the binary regularization parameter for 𝑈. dNMF also has Bin_V
argument, which is the binary regularization parameter for 𝑉. Setting large values against
Bin_U and Bin_V, BMF can also be obtained. Likewise, the ternary solutions (TMF and
STMF) can be obtained by ternary regularization parameters such as Ter_U and Ter_V.
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