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Summary
Researchers are continuously developing novel methods and algorithms in the field of applied
uncertainty quantification (UQ). During the development phase of a novel method or algorithm,
researchers and developers often rely on test functions taken from the literature for validation
purposes. Afterward, they employ these test functions as a fair means to compare the
performance of the novel method against that of the state-of-the-art methods in terms of
accuracy and efficiency measures.

UQTestFuns is an open-source Python3 library of test functions commonly used within the
applied UQ community. Specifically, the package provides:

• an implementation with minimal dependencies (i.e., NumPy and SciPy) and a common
interface of many test functions available in the UQ literature

• a single entry point collecting test functions and their probabilistic input specifications
in a single Python package

• an opportunity for an open-source contribution, supporting the implementation of new
test functions and posting reference results.

UQTestFuns aims to save the researchers’ and developers’ time from having to reimplement
many of the commonly used test functions themselves.

Statement of need
The field of uncertainty quantification (UQ) in applied science and engineering has grown
rapidly in recent years. Novel methods and algorithms for metamodeling (surrogate modeling),
reliability, and sensitivity analysis are being continuously developed. While such methods
are aimed at addressing real-world problems, often involving large-scale complex computer
models—from nuclear (Wicaksono et al., 2016) to civil engineering (Castellon et al., 2023),
from physics (Adelmann, 2019) to biomedicine (Eck et al., 2015)—researchers and developers
may prefer to use the so-called UQ test functions for validation and benchmarking purposes.

UQ test functions are mathematical functions taken as black boxes; they take a set of input
values and produce output values. In a typical UQ analysis, the input variables are considered
uncertain and thus modeled probabilistically. The results of a UQ analysis, in general, depend
not only on the computational model under consideration but also on the specification of the
input variables. Consequently, a UQ test function consists of both the specification of the
function as well as probabilistic distribution specification of the inputs.

UQ test functions are widely used in the community for several reasons:

• Test functions are fast to evaluate, at least faster than their real-world counterparts.
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• There are many test functions available in the literature for various types of analyses.
• Although test functions are taken as black boxes, their features are known; this knowledge

enables a thorough diagnosis of a UQ method.
• Test functions provide a fair means for comparing the performance of various UQ methods

in solving the same class of problems.

Several efforts have been made to provide relevant UQ test functions to the community. For
instance, researchers may refer to the following online resources to obtain UQ test functions
(the list is by no means exhaustive):

• The Virtual Library of Simulation Experiments (VLSE) (Surjanovic & Bingham, 2013):
This site is arguably the definitive repository for (but not exclusively) UQ test functions.
It provides over a hundred test functions for numerous applications; each test function is
described on a dedicated page that includes implementations in MATLAB and R.

• The Benchmark proposals of GdR (GdR MASCOT-NUM, 2008): The site provides a
series of documents that contain test function specifications.

• The Benchmark page of UQWorld (UQWorld, 2019): This community site provides a
selection of test functions for metamodeling, sensitivity analysis, and reliability analysis
exercises along with their implementation in MATLAB.

• RPrepo—a reliability problems repository (Rózsás & Slobbe, 2019): This repository
contains numerous reliability analysis test functions implemented in Python. It is not,
however, a stand-alone Python package.

Using these online resources, one either needs to download each test function separately1
or implement the functions following the provided formula (in the programming language of
choice).

As an alternative way for obtaining test functions, UQ analysis packages are often shipped with
a selection of test functions of their own, either for illustration, validation, or benchmarking
purposes. Examples from the applied UQ community in the Python ecosystem are (the numbers
are as of 2023-06-30; once again, the list is non-exhaustive):

• SALib (Herman & Usher, 2017; Iwanaga et al., 2022): Six test functions mainly for
illustrating the package capabilities in the examples.

• PyApprox (Jakeman, 2019): 18 test functions, including some non-algebraic functions
for benchmarking purposes.

• Surrogate Modeling Toolbox (SMT) (Bouhlel et al., 2019, 2023): 11 analytical and
engineering problems for benchmarking purposes.

• OpenTURNS (Baudin et al., 2017): 37 test functions packaged separately as otbenchmark
(Baudin et al., 2021; Fekhari et al., 2021) for benchmarking purposes.

These open-source packages already provide a wide variety of functions implemented in Python.
Except for otbenchmark, the problem is that these functions are part of the respective package.
To get access to the test functions belonging to a package, the whole analysis package must
be installed first. Furthermore, test functions from a given package are often implemented in
such a way that is tightly coupled with the package itself. To use or extend the test functions
belonging to an analysis package, one may need to first learn some basic usage and specific
terminologies of the package.

UQTestFuns aims to solve this problem by collecting UQ test functions into a single Python
package with a few dependencies (i.e., NumPy (Harris et al., 2020) and SciPy (Virtanen et
al., 2020)). The package enables researchers to conveniently access commonly used UQ test
functions implemented in Python. Thanks to a common interface, researchers can use the
available test functions and extend the package with new test functions with minimal overhead.

Regarding its aim, UQTestFuns is mostly comparable to the package otbenchmark. Both also
acknowledge the particularity of UQ test functions that requires combining a test function and

1except for RPrepo, which allows for downloading the whole repository.
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the corresponding probabilistic input specification. There are, however, some major differences:

• One of the otbenchmark’s main aims is to provide the OpenTURNS development team
with a tool for helping with the implementation of new algorithms. As such, it is built
on top of and coupled to OpenTURNS. UQTestFuns, on the other hand, has fewer
dependencies and is leaner in its implementations; it is more agnostic with respect to
any particular UQ analysis package.

• UQTestFuns is more modest in its scope, that is, simply to provide a library of UQ test
functions implemented in Python with a consistent interface and an online reference
(similar to that of VLSE (Surjanovic & Bingham, 2013)), and not, as in the case of
otbenchmark, an automated benchmark framework2 (Fekhari et al., 2021).

Package overview
Consider a computational model that is represented as an 𝑀-dimensional black-box function:

ℳ ∶ x ∈ 𝒟X ⊆ ℝ𝑀 ↦ 𝑦 = ℳ(x),

where 𝒟X and 𝑦 denote the input domain and the quantity of interest (QoI), respectively.

In practice, the exact values of the input variables are not exactly known and may be considered
uncertain. The ensuing analysis involving uncertain input variables can be formalized in the
uncertainty quantification (UQ) framework following Sudret (2007) as illustrated in Figure 1.

Figure 1: Uncertainty quantification (UQ) framework, adapted from Sudret (2007).

The framework starts from the center, with the computational model ℳ taken as a black box as
defined above. Then it moves on to the probabilistic modeling of the (uncertain) input variables.
Under the probabilistic modeling, the uncertain input variables are replaced by a random vector
equipped with a joint probability density function (PDF) 𝑓X ∶ x ∈ 𝒟X ⊆ ℝ𝑀 ↦ ℝ.

Afterward, the uncertainties of the input variables are propagated through the computational
model ℳ. The quantity of interest 𝑦 now becomes a random variable:

𝑌 = ℳ(X), X ∼ 𝑓X.

This leads to various downstream analyses such as reliability analysis, sensitivity analysis, and
metamodeling (or surrogate modeling). In UQTestFuns, these are currently the three main
classifications of UQ test functions by their applications in the literature3.

2A fully functional benchmark suite may, however, be in the future built on top of UQTestFuns.
3The classifications are not mutually exclusive; a given UQ test function may be applied in several contexts.

Wicaksono, & Hecht. (2023). UQTestFuns: A Python3 library of uncertainty quantification (UQ) test functions. Journal of Open Source Software,
8(90), 5671. https://doi.org/10.21105/joss.05671.

3

https://doi.org/10.21105/joss.05671


Reliability analysis
To illustrate the test functions included in UQTestFuns, consider the circular pipe crack reliability
problem, a 2-dimensional function for testing reliability analysis methods (Li et al., 2018;
Verma et al., 2015):

𝑔(x;p) = ℳ(x; 𝑡, 𝑅) −𝑀 = 4𝑡𝜎𝑓𝑅2 (cos(𝜃
2
) − 1

2
sin (𝜃)) −𝑀,

where x = {𝜎𝑓, 𝜃} is the two-dimensional vector of input variables probabilistically defined
further below; and p = {𝑡,𝑅,𝑀} is the vector of (deterministic) parameters.

In a reliability analysis problem, a computational model ℳ is often combined with another set
of parameters (either uncertain or deterministic) to define the so-called performance function
or limit-state function of a system denoted by 𝑔. The task for a reliability analysis method is
to estimate the failure probability of the system defined, following Sudret (2012), as:

𝑃𝑓 = ℙ[𝑔(X;p) ≤ 0] = ∫
𝒟𝑓={x|𝑔(x;p)≤0}

𝑓X(x) 𝑑x, (1)

where 𝑔(x;p) ≤ 0.0 is defined as a failure state. The difficulty of evaluating the integral above
stems from the fact that the integration domain 𝐷𝑓 is defined implicitly.

The circular pipe crack problem can be created in UQTestFuns as follows:

>>> import uqtestfuns as uqtf

>>> circular_pipe = uqtf.CircularPipeCrack()

The resulting instance is callable and can be called with a set of valid input values. The
probabilistic input model is an integral part of a UQ test function; indeed, according to
Equation 1, the analysis results depend on it. Therefore, in UQTestFuns, the input model
following the original specification is always attached to the instance of the test function:

>>> print(circular_pipe.prob_input)

Name : CircularPipeCrack-Verma2015

Spatial Dim. : 2

Description : Input model for the circular pipe crack problem from Verma...

Marginals :

No. Name Distribution Parameters Description

----- ------- -------------- ----------------- --------------------

1 sigma_f normal [301.079 14.78 ] flow stress [MNm]

2 theta normal [0.503 0.049] half crack angle [-]

Copulas : None

This probabilistic input model instance can be used to transform a set of values in a given
domain (say, the unit hypercube [0, 1]𝑀) to the domain of the test function.

The limit-state surface (i.e., where 𝑔(x) = 0) for the circular pipe crack problem is shown in
Figure 2 (left plot). In the middle plot, 106 random sample points are overlaid; each point is
classified whether it is in failure (red) or safe domain (blue). The histogram (right plot) shows
the proportion of points that fall in the failure and safe domain.
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Figure 2: Illustration of reliability analysis: Circular pipe crack problem.

As illustrated in the previous series of plots, the task for a reliability analysis method is to
estimate the probability where 𝑔(X) ≤ 0 as accurately and with as few model evaluations as
possible. UQTestFuns includes test functions used in reliability analysis exercises in various
dimensions having different complexities of the limit-state surface.

Sensitivity analysis
As another illustration, this time in the context of sensitivity analysis, consider the Sobol’-G
function, an established sensitivity analysis test function (Saltelli & Sobol’, 1995) included in
UQTestFuns:

ℳ(x) =
𝑀
∏
𝑚=1

|4𝑥𝑚 − 2| + 𝑎𝑚
1 + 𝑎𝑚

,

where x = {𝑥1,… , 𝑥𝑀} is the 𝑀-dimensional vector of independent uniform random variables
in [0, 1]𝑀; and a = {𝑎𝑚 = 𝑚−1

2.0 ,𝑚 = 1,… ,𝑀} is the set of (deterministic) parameters.

Unlike the previous test function example, the Sobol’-G test function is a variable-dimension test
function and can be defined for any given dimension. For instance, to create a 6-dimensional
Sobol’-G function:

>>> sobol_g = uqtf.SobolG(spatial_dimension=6)

As before, the probabilistic input model of the function as prescribed in the original specification
is attached to the instance of the test function (i.e., the prob_input property).

The task of a sensitivity analysis method is to ascertain either qualitatively or quantitatively the
most important input variables (for factor prioritization) or the least important input variables
(for factor fixing/screening) with as few model evaluations as possible; for details on this topic,
please refer to Saltelli et al. (2007) and Iooss & Lemaıt̂re (2015). UQTestFuns includes test
functions used in sensitivity analysis exercises in various dimensions having different complexities
in terms of the interactions between input variables.

Metamodeling
In practice, the computational model ℳ is often complex. Because a UQ analysis typically
involves evaluating ℳ numerous times (∼ 102 — 106), the analysis may become intractable if
ℳ is expensive to evaluate. As a consequence, in many UQ analyses, a metamodel (surrogate
model) is employed. Based on a limited number of model (ℳ) evaluations, such a metamodel
should be able to capture the most important aspects of the input/output mapping but having
much less cost per evaluation; it can, therefore, be used to replace ℳ in the analysis.

While not a goal of UQ analyses per se, metamodeling is nowadays an indispensable component
of the UQ framework (Sudret et al., 2017). UQTestFuns also includes test functions from the
literature that are used as test functions in a metamodeling exercise.
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Documentation
The online documentation of UQTestFuns is an important aspect of the project. It includes
a detailed description of each of the available UQ test functions, their references, and when
applicable, published results of a UQ analysis conducted using the test function. Guides on
how to add additional test functions as well as to update the documentation are also available.

The package documentation is available on the UQTestFuns readthedocs.
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