
Zoomerjoin: Superlatively-Fast Fuzzy Joins
Beniamino Green 1¶

1 Yale University, USA ¶ Corresponding author
DOI: 10.21105/joss.05693

Software
• Review
• Repository
• Archive

Editor: Samuel Forbes
Reviewers:

• @cjbarrie
• @wincowgerDEV

Submitted: 06 June 2023
Published: 26 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Researchers often have to link large datasets without access to a unique identifying key, or on
the basis of a field that contains misspellings, small errors, or is otherwise inconsistent. In these
cases, “fuzzy” matching techniques are employed, which are resilient to minor corruptions in
the fields meant to identify observations between datasets. Most popular methods involve
comparing all possible pairs of matches between each dataset, incurring a computational cost
proportional to the product of the rows in each dataset 𝒪(𝑚𝑛). As such, these methods do
not scale to large datasets.

Zoomerjoin is an R package that empowers users to fuzzily-join massive datasets with millions
of rows in seconds or minutes. Backed by two performant, mutlithreaded Locality-Sensitive
Hash algorithms (Broder, 1997; Datar et al., 2004), zoomerjoin saves time by not comparing
distant pairs of observations and typically runs in linear (𝒪(𝑚 + 𝑛)) time. The algorithmic
details are technical but the results are transformational; for the distance-metrics it supports,
zoomerjoin takes seconds or minutes to join datasets that would have taken other matching
packages hours or years.

Statement of Need
Fuzzy matching is typically taken to mean identifying all pairs of observations between two
datasets that have distance less than a specified threshold. Existing fuzzy-joining methods
in R do not scale to large datasets as they exhaustively compare all possible pairs of units
and recording all matching pairs, incurring a quadratic 𝒪(𝑚𝑛) time cost. Perhaps worse, the
most widely-used software packages typically also have a space complexity of 𝑂(𝑚𝑛), meaning
that a patient user cannot simply wait for the join to complete, as the memory of even large
machines will be quickly exhausted (Robinson, 2020).

Zoomerjoin solves this problem by implementing two Locality-Sensitive Hashing algorithms
(Broder, 1997; Datar et al., 2004) which sort observations into buckets using a bespoke hash
function which assigns similar entries the same key with high probability, while dissimilar items
are unlikely to be assigned the same key. After this initial sorting step, the algorithm checks
pairs of records in the same bucket to see if they are close enough to be considered a match.
Records in different buckets are never compared, so the algorithm takes 𝑂(max𝑖𝑗 𝑚𝑖𝑛𝑗) time
to run (time proportional to the size of the largest bucket). In the ordinary case that each
observation matches to few points in another dataset, the running time is dominated by the
hashing step, and the program finishes in linear time using linear memory.

With this remarkable increase in speed comes two costs: Locality-Sensitive hashing is a
probabilistic algorithm, so there is some probability that some true matches may be discarded
by chance. This said, the chance that any matches are discarded by chance can be made
arbitrarily low by changing parameters of the hash. Additionally, the LSH algorithms are more
complex to implement than exhaustive searches; zoomerjoin only provides hashing schemes for
two common distances, the Jaccard distance (for strings and other data that can be represented

Green. (2023). Zoomerjoin: Superlatively-Fast Fuzzy Joins. Journal of Open Source Software, 8(89), 5693. https://doi.org/10.21105/joss.05693. 1

https://orcid.org/0009-0006-4501-597X
https://doi.org/10.21105/joss.05693
https://github.com/openjournals/joss-reviews/issues/5693
https://github.com/beniaminogreen/zoomerjoin
https://doi.org/10.5281/zenodo.8370652
https://orcid.org/0000-0003-1022-4676
https://github.com/cjbarrie
https://github.com/wincowgerDEV
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05693

as a set) and the Euclidean distance (for vectors or points in space).

Implementation Details:
Zoomerjoin allows users to fuzzily-join on the basis of two distance measures, the Euclidean
distance and the Jaccard distance. The Jaccard similarity is defined over two sets, 𝒜 and ℬ,
as the cardinality of their intersection over the cardinality of their union. It can take values in
the inverval [0,1].

𝑠𝑖𝑚(𝒜,ℬ) = |𝒜 ∩ ℬ|
|𝒜 ∪ ℬ|

Two strings can be compared by transforming them into sets of characters or sets of consecutive
“shingles” of characters, then comparing them using the Jaccard distance.

The Euclidean distance, defined over two vectors, ⃗𝑎, and ⃗𝑏 is defined as the square root of the
sum of squares of their componentwise distances, and can take values in the interval [0,∞):

𝑑𝑖𝑠𝑡(⃗𝑎, ⃗𝑏) = || ⃗𝑎 − ⃗𝑏||2

Integration between R and rust is managed by the extendr and rextendr Rust and R packages
(Wilke et al., 2023). Instrumental to the package’s fast performance is the relentlessly-optimized
dashmap Rust crate (Wejdenstal, 2023), which provides a fast hash map that can be populated
by many threads working in parallel. Dashmap’s concurrent hash maps are used to quickly
store the hashes associated with each observation and allow multiple threads to compute
hashes and write to the hash map at the same time. Parallel computation of the hashes is
scheduled using the parallel iterators provided by the rayon crate (Matsakis & Stone, 2023).
The Locality-Sensitive Hash implementation for the Jaccard distance is modeled after the
textbook description by Leskovec et al. (2014), including the technique of storing the hashes
of the tokens rather than the tokens themselves to save memory.

Benchmarks
I show how the runtime and memory consumption of the programs scale with the number of
observations in the datasets being joined. I choose to include the fuzzyjoin package as a
point of comparison as its superlative tidy syntax and fast underlying implementation backed
by the multithreaded stringdist package (Loo, 2014) make it the de-facto standard for
fuzzy-matching in R.

I compare both packages’ time and memory usage joining two datasets using the Jaccard
distance for strings and the Euclidean distance for points.

For the Jaccard distance benchmarks, I use both R packages to join rows of donor names from
the Database on Ideology, Money in Politics, and Elections (DIME) (Bonica, 2016), a database
of donors to interest groups, a dataset used to benchmark other matching / joining algorithms
(Kaufman & Klevs, 2021).

For the Euclidean distance, I use the programs to link datasets of points drawn from a
multivariate gaussian with 50 dimensions to a copy of this dataset with dataset with each
observation shifted by adding a small 𝜀 along each axis. The exact code to generate this
dataset can be seen below:

R Code to create synthetic dataset for Euclidean Joining

n <- 10^5

p <- 50

X <- matrix(rnorm(n * p), n, p)

Green. (2023). Zoomerjoin: Superlatively-Fast Fuzzy Joins. Journal of Open Source Software, 8(89), 5693. https://doi.org/10.21105/joss.05693. 2

https://doi.org/10.21105/joss.05693

First dataframe to join

X_1 <- as.data.frame(X)

Second dataframe to join

X_2 <- as.data.frame(X + .000000001)

For both types of joins, I adjust the hyperparameters until the false-negative rate is less than
.1%, meaning that fewer than .1% of all matches are discarded by random chance. More
details, including the complete benchmarking code can be seen in the package’s benchmarking
vignette.

Figure 1: Memory Use and Runtime Comparison of Fuzzy-Joining Methods in R

Zoomerjoin achieves almost linear scaling in both runtime and memory, while fuzzyjoin scales
quadratically in both quantities. Even for datasets with 2500 rows, zoomerjoin finishes in
under a second. By contrast, the Jaccard-distance joins implemented in fuzzyjoin take over
three minutes to join. For the largest Euclidean datasets, fuzzyjoin almost exhausts the 8GB
memory capacity of the laptop used for benchmarking, while zoomerjoin’s memory rises above
above 8 MB — a thousand-fold decrease.

Example Usage:
Zoomerjoin is designed to be easy to use for R users familiar with the popular dplyr grammar
of data manipulation (Wickham et al., 2023). To give an example, I show how to use the
euclidean_inner_join function (the fuzzy analogue of dplyr’s inner_join) to join the two
datasets from the benchmarking example:

euclidean_inner_join(

X_1, X_2,

threshold = .1,

n_bands = 90,

band_width = 2,

r = .1

)

The first two arguments are exactly the same as those in the corresponding dplyr function,
and should be familiar to most R users. The remaining arguments, threshold, n_bands,
band_width, and r are specific to zoomerjoin, and determine how close units must be
to be considered a match, as well as the performance / recall of the LSH scheme. As
with dplyr, the package also allows users to perform other types of logical joins using the

Green. (2023). Zoomerjoin: Superlatively-Fast Fuzzy Joins. Journal of Open Source Software, 8(89), 5693. https://doi.org/10.21105/joss.05693. 3

http://beniamino.org/zoomerjoin/articles/benchmarks.html
http://beniamino.org/zoomerjoin/articles/benchmarks.html
https://doi.org/10.21105/joss.05693

euclidean_(outer|left|right|full)_join family of functions functions. A corresponding
family of functions also exists for the fuzzy joins based on the Jaccard distance.

State of the Field:
To the best of my knowledge, no other packages exist for fuzzy-joining in sub-quadratic time
in R. Two similar packages are the aforementioned fuzzyjoin, which provides fast, tidy joins
for small to medium datasets, and the textreuse package (Mullen, 2020) which implements
Locality-Sensitive Hashing, but does not offer a joining functionality, and is implimented mostly
in R.

Zoomerjoin draws from both packages, and aims to synthesize and extend aspects of both to
create a powerful joining toolset. The package combines the functionality of the tidy, dplyr-style
fuzzyjoins provided by fuzzyjoin with the performance offered by a Rust implimentation
the same Locality-Sensitive Hashing algorithm used in textreuse. The core of the package is
written in performant Rust code, which makes the package suitable for datasets with hundreds
of millions of observations.

Other Functionalities
The flagship feature of zoomerjoin is its fast, dplyr-style joins, but it also implements two other
algorithms improved by locality-sensitive hashing: a fuzzy-string grouping function which is
backed by locality-sensitive hashing, and an implementation of the probabilistic record-linkage
algorithm based on the Fellegi-Sunter model (Fellegi & Sunter, 1969) developed by Enamorado
et al. (2018).

The fuzzy-string-grouping algorithm provides a principled way to correct misspellings in
administrative datasets by combining similar pairs of strings into groups with a standardized
name. The probabilistic record-linkage algorithm described by Enamorado et al. (2018) provides
a way to link entities between two datasets but involves comparing all possible pairs between
each datasets. A simple pre-processing step with the Locality-Sensitive Hashing methods of
zoomerjoin can drastically decrease the runtime by considering as potential matches units that
have similar values of the blocking fields. This allows the algorithm to scale almost linearly
with the size of the input datasets, at the cost of discarding a small amount of true matches
excluded by the blocking scheme.

Limitations and Future Work
Zoomerjoin currently provides locality-sensitive hashing implementations for two distances:
the Jaccard and the Euclidean distance. While these distance metrics are suitable for many if
not most applications, researchers may wish to use other metrics, or bespoke combinations of
distance metrics. Further work could extend the functionality of the package to also support
LSH-backed joins based on other notions of distance such as the edit distance (Marçais et al.,
2019) for strings, or the Manhattan distance for points.

Acknowledgements
I thank Jack Green, Cleo Falvey, John Cho, Matthew Dahl, and Amelia Malpas for their
feedback and suggestions in designing the package and revising this manuscript.

References :
Bonica, A. (2016). Database on ideology, money in politics, and elections: Public version 2.0

[computer file]. https://data.stanford.edu/dime

Green. (2023). Zoomerjoin: Superlatively-Fast Fuzzy Joins. Journal of Open Source Software, 8(89), 5693. https://doi.org/10.21105/joss.05693. 4

https://data.stanford.edu/dime
https://doi.org/10.21105/joss.05693

Broder, A. Z. (1997). On the resemblance and containment of documents. Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171). https:
//doi.org/10.1109/sequen.1997.666900

Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. S. (2004, June). Locality-sensitive hashing
scheme based on p-stable distributions. Proceedings of the Twentieth Annual Symposium
on Computational Geometry. https://doi.org/10.1145/997817.997857

Enamorado, T., Fifield, B., & Imai, K. (2018). Using a probabilistic model to assist merging
of large-scale administrative records. SSRN Electronic Journal. https://doi.org/10.2139/
ssrn.3214172

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Journal of the American
Statistical Association, 64(328), 1183–1210. https://doi.org/10.1080/01621459.1969.
10501049

Kaufman, A. R., & Klevs, A. (2021). Adaptive fuzzy string matching: How to merge
datasets with only one (messy) identifying field. Political Analysis, 30(4), 590–596.
https://doi.org/10.1017/pan.2021.38

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets (2nd ed.).
Cambridge University Press. https://doi.org/10.1017/CBO9781139924801

Loo, M. P. J. van der. (2014). The stringdist Package for Approximate String Matching. The
R Journal, 6(1), 111–122. https://doi.org/10.32614/RJ-2014-011

Marçais, G., DeBlasio, D., Pandey, P., & Kingsford, C. (2019). Locality-sensitive hashing for the
edit distance. Bioinformatics, 35(14), i127–i135. https://doi.org/10.1093/bioinformatics/
btz354

Matsakis, N., & Stone, J. (2023). Rayon: Simple work-stealing parallelism for rust. https:
//github.com/rayon-rs/rayon

Mullen, L. (2020). Textreuse: Detect text reuse and document similarity. https://CRAN.
R-project.org/package=textreuse

Robinson, D. (2020). Fuzzyjoin: Join tables together on inexact matching. https://CRAN.
R-project.org/package=fuzzyjoin

Wejdenstal, J. (2023). Dashmap: Blazing fast concurrent HashMap for rust. https://github.
com/xacrimon/dashmap

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar
of data manipulation. https://CRAN.R-project.org/package=dplyr

Wilke, C. O., Thomason, A., Reimert, M. M., Kosenkov, I., Yutani, H., & Barrett, M. (2023).
Rextendr: Call rust code from r using the ’extendr’ crate. https://CRAN.R-project.org/
package=rextendr

Green. (2023). Zoomerjoin: Superlatively-Fast Fuzzy Joins. Journal of Open Source Software, 8(89), 5693. https://doi.org/10.21105/joss.05693. 5

https://doi.org/10.1109/sequen.1997.666900
https://doi.org/10.1109/sequen.1997.666900
https://doi.org/10.1145/997817.997857
https://doi.org/10.2139/ssrn.3214172
https://doi.org/10.2139/ssrn.3214172
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1017/pan.2021.38
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://CRAN.R-project.org/package=textreuse
https://CRAN.R-project.org/package=textreuse
https://CRAN.R-project.org/package=fuzzyjoin
https://CRAN.R-project.org/package=fuzzyjoin
https://github.com/xacrimon/dashmap
https://github.com/xacrimon/dashmap
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=rextendr
https://CRAN.R-project.org/package=rextendr
https://doi.org/10.21105/joss.05693

	Summary
	Statement of Need
	Implementation Details:
	Benchmarks
	Example Usage:
	State of the Field:
	Other Functionalities
	Limitations and Future Work
	Acknowledgements

	References :

