
lavaanExtra: Convenience Functions for Package
lavaan
Rémi Thériault 1

1 Department of Psychology, Université du Québec à Montréal, Québec, Canada
DOI: 10.21105/joss.05701

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @jamesuanhoro
• @TDJorgensen

Submitted: 20 June 2023
Published: 11 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
lavaanExtra is an R package that offers an alternative and vector-based syntax to the package
lavaan, as well as other convenience functions such as naming paths and defining indirect
effects automatically. It also offers convenience formatting optimized for publication and script
sharing workflows.

Statement of need
lavaan (Rosseel, 2012) is a very popular R package for structural equation modeling (SEM).
The package relies on specific operators to define latent variables, regressions, covariances,
indirect effects, and so on. However, some individuals (e.g., beginners to R and lavaan)—or in
some cases power users—may prefer not having to specify the operators themselves, or would
like to see some steps automatized, such as generating the lavaan model layout or defining
indirect effects. Furthermore, for researchers, it can be relatively difficult to extract relevant
statistical outputs in the form of tables and figures that are suitable for scientific publication.

lavaanExtra does mainly two things to address these issues. First, it offers an alternative,
code-efficient flexible modular syntax that allows automatizing certain steps, such as defining
indirect effects in certain scenarios or the desired structure of a SEM model to be plotted
(however, note that lavaan is also compatible with a modular approach). Second, it facilitates
the analysis-to-publication workflow by providing publication-ready tables and figures following
the style requirements of the American Psychological Association (APA).

Usage
There is a single function at the center of the proposed alternative syntax, write_lavaan().
The idea behind write_lavaan() is to define individual components (regressions, covariances,
latent variables, etc.), provide them to the function, and have it write the lavaan model, so
the user does not have to worry about making typos in the specific symbols required for each
aspect of the model.

There are several benefits to this approach. Some lavaan models can become very large. By
defining the entire model every time, such as is typical with lavaan users, not only do we
break the DRY (Don’t Repeat Yourself) principle, but our scripts can also become long and
unwieldy. This problem gets worse in the scenario where we want to compare several variations
of the same general model. write_lavaan() allows the user to reuse code components, say,
only the latent variables, for future models.

This aspect also allows better control over the user’s code. If the user makes a mistake in one
of, say, five SEM models definition, the user will have to change it at all five places within the
script. With write_lavaan(), users only need to define the reusable component the first time,
or until they need to change that component again.

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

1

https://orcid.org/0000-0003-4315-6788
https://doi.org/10.21105/joss.05701
https://github.com/openjournals/joss-reviews/issues/5701
https://github.com/rempsyc/lavaanExtra
https://doi.org/10.5281/zenodo.8421873
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/jamesuanhoro
https://github.com/TDJorgensen
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

The vector-based approach also allows the use of functions to define components. For example,
if all scale items are named consistently, say x1 to x50, one can use paste0("x", 1:50)

instead of typing all the items by hand and risk making mistakes. However, note that reusable
components through functions is also compatible with lavaan.

Another issue with lavaan models is the readability of the code defining the model. One can
go to lengths to make it pretty, but not everyone does, and many people do not use the same
strategies to organize the information of the model definition. With write_lavaan(), not
only is the model information standardized, but it is also neatly divided into clear and useful
categories.

Finally, for beginners, it can be difficult to remember the correct lavaan symbols for each
specific operation. write_lavaan() uses familiar names to convert the information to the
correct symbols. Even for people familiar with lavaan syntax, this approach can save time.
The function also offers the possibility to define the named paths automatically with clear and
intuitive names.

I provide a simple Confirmatory Factor Analysis (CFA) example below using the
HolzingerSwineford1939 dataset (Holzinger & Swineford, 1939). The dataset con-
tains the mental ability test scores of children. In this example, we want to define the latent
variables visual (visual perception ability), textual (reading and writing ability), and speed

(processing speed ability), which are defined by items 1 to 9, respectively. We can then use
the cat() function on the resulting object (of type character) to read it in the traditional way
and make sure we have not made any mistake.

library(lavaanExtra)

x <- paste0("x", 1:9)

latent <- list(

visual = x[1:3],

textual = x[4:6],

speed = x[7:9]

)

model.cfa <- write_lavaan(latent = latent)

cat(model.cfa)

##

[-----Latent variables (measurement model)-----]

##

visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9

Should we want to use these latent variables in a full SEM model, we do not need to define
the latent variables again, only the new components. In the example below, I add regressions,
covariances, and indirect effects to the model. Two of our latent variables (textual and speed)
are now predicted by our mediating variable, visual. In turn, visual is now predicted by our
independent variables, grade (the students’ grade) and ageyr (the students’ age, in years).

With the lavaanExtra syntax, when defining our lists of components, we can think of the
= sign as “predicted by”, a bit like ~ for regression. There is an exception to this for the
indirect object, which also allows specifying our variables directly instead. When such is the
case, write_lavaan() will define all indirect paths automatically.

DV <- c("textual", "speed")

M <- "visual"

IV <- c("grade", "ageyr")

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

2

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

mediation <- list(speed = M, textual = M, visual = IV)

regression <- list(speed = IV, textual = IV)

covariance <- list(speed = "textual", ageyr = "grade", x4 = x[5:6])

indirect <- list(IV = IV, M = M, DV = DV)

model.sem <- write_lavaan(mediation = mediation,

regression = regression,

covariance = covariance,

indirect = indirect,

latent = latent,

label = TRUE)

cat(model.sem)

##

[-----Latent variables (measurement model)-----]

##

visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9

##

##

[-----------Mediations (named paths)-----------]

##

speed ~ visual_speed*visual

textual ~ visual_textual*visual

visual ~ grade_visual*grade + ageyr_visual*ageyr

##

##

[---------Regressions (Direct effects)---------]

##

speed ~ grade + ageyr

textual ~ grade + ageyr

##

##

[------------------Covariances-----------------]

##

speed ~~ textual

ageyr ~~ grade

x4 ~~ x5 + x6

##

##

[--------Mediations (indirect effects)---------]

##

grade_visual_textual := grade_visual * visual_textual

grade_visual_speed := grade_visual * visual_speed

ageyr_visual_textual := ageyr_visual * visual_textual

ageyr_visual_speed := ageyr_visual * visual_speed

Tables
The nice_fit() function extracts only some of the most popular fit indices and organize them
such that it is easy to compare models. There is an option to format the table as an APA
flextable (Gohel & Skintzos, 2023), through the rempsyc package (Thériault, 2023), using
option nice_table = TRUE. This flextable object can then be easily exported to Microsoft
Word. Below we fit our two earlier models and feed them to nice_fit() as a named list:

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

3

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

library(lavaan)

fit.cfa <- cfa(model.cfa, data = HolzingerSwineford1939)

fit.sem <- sem(model.sem, data = HolzingerSwineford1939)

list.mods <- list(`CFA model` = fit.cfa, `SEM model` = fit.sem)

fit_table <- nice_fit(list.mods, nice_table = TRUE)

fit_table

The table can then be saved to word simply using flextable::save_as_docx() on the resulting
flextable object.

flextable::save_as_docx(fit_table, path = "fit_table.docx")

It will also render to PDF in an rmarkdown document with output: pdf_document, but using
latex_engine: xelatex is necessary when including Unicode symbols in tables like with the
nice_fit() function.

It is similarly possible to prepare APA tables in Word or other formats with the regression coef-
ficients (lavaan_reg()), covariances (lavaan_cov()), correlations (lavaan_cor()), variances
(lavaan_var()), or user-defined parameters like for indirect effects (lavaan_defined()). For
example, for indirect effects:

lavaan_defined(fit.sem, lhs_name = "Indirect Effect", nice_table = TRUE)

Figures
There are several packages designed to plot SEM models, but few that people consider satisfying
or sufficiently good for publication by default. There are two packages that stand out however,
lavaanPlot (Lishinski, 2021) and tidySEM (van Lissa, 2023b). Yet, even for those excellent
packages, most people do not view them as publication-ready or at least optimized in the best
possible way.

This is what nice_lavaanPlot and nice_tidySEM aim to correct. Let’s compare the default
lavaanPlot() and nice_lavaanPlot() outputs side-by-side for demonstration purposes.

lavaanPlot::lavaanPlot(model = fit.sem)

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

4

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

grade

visual

textual speed

ageyr

x1 x2 x3

x4 x5 x6 x7 x8 x9

nice_lavaanPlot(fit.sem)

grade

visual0.35***

textual0.31***

speed

0.27***

ageyr -0.22**

-0.36***

x1

x2

x3

x4

x5

x6

x7

x8

x9

0.78***
0.42***

0.58***

0.37***

0.38***

0.93***

0.85***
0.85***

0.6***

0.75***
0.62***

For reference, nice_lavaaPlot() is a simple wrapper around lavaanPlot::lavaanPlot() and
an identical figure can be obtained using only lavaanPlot with the following code:

lavaanPlot::lavaanPlot(

model = fit.sem,

node_options = list(shape = "box", fontname = "Helvetica"),

coefs = TRUE,

stand = TRUE,

stars = c("regress", "latent", "covs"),

graph_options = c(rankdir = "LR"),

sig = .05

)

As these figures demonstrate, nice_lavaanPlot() has several elements frequently requested

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

5

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

by researchers (especially in psychology): (a) a horizontal, rather than vertical, layout; (b) the
coefficients appear by default (but only significant ones); (c) significance stars; and (d) the
use of a sans serif font (as required by APA style for figures).

Even so, nice_lavaanPlot is not perfectly optimal for publication, for example for the use
of curved lines, which many researchers dislike. Nonetheless, it will still yield excellent and
satisfying results for a quick and easy check.

The best option for publication then is nice_tidySEM. Let’s first look at the default output of
the base tidySEM::graph_sem() for reference.

tidySEM::graph_sem(fit.sem)

0.53*** 1.14*** 0.85***

0.17 0.47*** 0.33***

0.76*** 0.45*** 0.62***

0.25***

1.10***

0.76*** 0.81***

0.29***

1.00
0.54***

0.71*** 1.00
1.00***

0.86*** 1.00
1.16***

0.96***

0.27***0.44***

0.63***

−0.19**

0.36***

0.08

0.67***

−0.37***
0.04

0.27***

−0.09
−0.11

ageyr

grade

speedtextualvisual

x1 x2 x3 x4 x5 x6 x7 x8 x9

The author of the tidySEM package notes that

This uses a default layout, provided by the igraph package. However, the node
placement is not very aesthetically pleasing. One of the areas where tidySEM
really excels is customization. (van Lissa, 2023a)

In this sense, most of the time, both tidySEM and nice_tidySEM will need a layout in order to
yield the best result. One of the benefits of nice_tidySEM is that when our model is simply
made of three “levels”: independent variables, mediators, and dependent variables (e.g., for
a path analysis, or if we do not want to draw the items for a full SEM), it is possible to
automatically specify a proper layout by simply feeding it the indirect object that we created
earlier.

nice_tidySEM(fit.sem, layout = indirect)

.38***

.37***

.35***

−.22**

.27***

.12

.31***

−.36*** .08.51***

ageyr

grade

speed

textual

visual

For reference, below I provide the code necessary to reproduce this figure using the tidySEM

package only.

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

6

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

library(tidySEM)

mylayout <- data.frame(

IV = c("grade", "ageyr"),

M = c("", "visual"),

DV = c("textual", "speed")

)

p <- prepare_graph(fit.sem, layout = mylayout)

p <- hide_var(p)

x <- p$edges$est_sig_std

x <- sub("^0", "", x)

x <- sub("^-0", "-", x)

p$edges$label <- x

p$edges$linetype <- 1

p$edges$arrow <- ifelse(p$edges$arrow == "none", "both", p$edges$arrow)

plot(p)

For the time being, nice_tidySEM only supports this three-level automatic layout, but designs
with more levels are in the works. In the meantime, when the model is more complex (or that
we want to include items), it is necessary to specify the layout manually using a matrix or data
frame, which allows fine-grained control over the generated figure.

mylayout <- data.frame(

IV = c("x1", "grade", "", "ageyr", ""),

M = c("x2", "", "visual", "", ""),

DV = c("x3", "textual", "", "speed", "x9"),

DV.items = c(paste0("x", 4:8)))

as.matrix(mylayout)

IV M DV DV.items

[1,] "x1" "x2" "x3" "x4"

[2,] "grade" "" "textual" "x5"

[3,] "" "visual" "" "x6"

[4,] "ageyr" "" "speed" "x7"

[5,] "" "" "x9" "x8"

nice_tidySEM(fit.sem, layout = mylayout, label_location = 0.70)

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

7

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

.78*** .42*** .58***

.93***

.85***

.85***

.60***

.75***
.62***

.38***

.37***.35***

−.22**

.27***

.12

.31***

−.36***

.08.51***

−.30

−.47

ageyr

grade

speed

textual

visual

x1 x2 x3 x4

x5

x6

x7

x8x9

If the figure is still not sufficiently satisfying, it is possible to store the output as a tidy_sem

object (by using plot = FALSE), which can then be modified according to regular tidySEM

syntax. This can be useful to fine-tune and finalize the figure.

x <- nice_tidySEM(fit.sem, layout = mylayout, label_location = 0.65,

reduce_items = c(x = 0.4, y = 0.2), plot = FALSE)

from <- x$edges$from

to <- x$edges$to

x$edges[from == "grade" & to == "speed", "curvature"] <- 40

x$edges[from == "ageyr" & to == "textual", "curvature"] <- -40

plot(x)

.78*** .42*** .58***

.93***

.85***

.85***

.60***

.75***.62***

.38***

.37***.35***

−.22**

.27***

.12

.31***

−.36***
.08.51***

−.30

−.47

ageyr

grade

speed

textual

visual

x1 x2 x3 x4

x5

x6

x7

x8x9

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

8

https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

The resulting figure can be saved using ggplot2::ggsave() (Wickham, 2016):

ggplot2::ggsave("my_semPlot.pdf", width = 8, height = 6)

For reference, below I provide the code necessary to reproduce this figure using the tidySEM

package only.

library(tidySEM)

p <- prepare_graph(fit.sem, layout = mylayout)

p <- edit_graph(p, { label_location <- 0.65 })

p <- hide_var(p)

x <- p$edges$est_sig_std

x <- sub("^0", "", x)

x <- sub("^-0", "-", x)

p$edges$label <- x

items <- p$edges[p$edges$op == "=~", "rhs"]

i <- p$nodes$name %in% items

p$nodes[i,]$node_xmin <- p$nodes[i,]$node_xmin + 0.4

p$nodes[i,]$node_xmax <- p$nodes[i,]$node_xmax - 0.4

p$nodes[i,]$node_ymin <- p$nodes[i,]$node_ymin + 0.2

p$nodes[i,]$node_ymax <- p$nodes[i,]$node_ymax - 0.2

p$edges$linetype <- 1

p$edges$arrow <- ifelse(p$edges$arrow == "none", "both", p$edges$arrow)

from <- p$edges$from

to <- p$edges$to

p$edges[from == "grade" & to == "speed", "curvature"] <- 40

p$edges[from == "ageyr" & to == "textual", "curvature"] <- -40

plot(p)

Other differences between tidySEM and nice_tidySEM() are that: (a) the latter displays
standardized coefficients by default (but unstandardized coefficients can be specified with
est_std = FALSE), (b) if using standardized coefficients, the leading zero is omitted (as
preferred by many researchers); (c) does not plot the variances by default, (d) uses full
double-headed arrows instead of dashed lines with no arrows for covariances, (e) has further
arguments for easy customization (e.g., reduce_items), and (f) allows defining an automatic
layout in specific cases (as described earlier).

Finally, the base function, tidySEM::graph_sem(), is difficult to customize in depth. For
the aesthetics of nice_tidySEM(), for example, we need to rely instead on the tidySEM’s
prepare_graph(), edit_graph(), and numerous conditional formatting functions. In contrast
to nice_tidySEM(), these tidySEM functions act more like a grammar of SEM plotting, akin
to the popular grammar of graphics, ggplot2 (Wickham, 2016). This provides great flexibility,
but for the occasional user, also comes with an additional burden, as users may for example
need to skim through almost 400 undocumented functions, should they want to conditionally
edit the resulting tidy_sem object.

Availability
The lavaanExtra package is licensed under the MIT License. It is available on CRAN, and
can be installed using install.packages("lavaanExtra"). The full tutorial website can be
accessed at: https://lavaanExtra.remi-theriault.com/. All code is open-source and hosted on
GitHub, and bugs can be reported at https://github.com/rempsyc/lavaanExtra/issues/.

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

9

https://lavaanExtra.remi-theriault.com/
https://github.com/rempsyc/lavaanExtra/issues/
https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

Acknowledgements
I would like to thank Hugues Leduc, Jany St-Cyr, Andreea Gavrila, Patrick Coulombe, Jay
Olson, Charles-Étienne Lavoie, and Björn Büdenbender for statistical or technical advice that
helped inform some functions of this package and/or useful feedback on this manuscript. I
would also like to acknowledge funding from the Social Sciences and Humanities Research
Council of Canada.

References
Gohel, D., & Skintzos, P. (2023). flextable: Functions for tabular reporting. https://CRAN.

R-project.org/package=flextable

Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor
solution. Supplementary Educational Monographs.

Lishinski, A. (2021). lavaanPlot: Path diagrams for ’lavaan’ models via ’DiagrammeR’.
https://CRAN.R-project.org/package=lavaanPlot

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of
Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02

Thériault, R. (2023). rempsyc: Convenience functions for psychology. Journal of Open Source
Software, 8(87), 5466. https://doi.org/10.21105/joss.05466

van Lissa, C. J. (2023a). Plotting graphs for structural equation models. https://cjvanlissa.
github.io/tidySEM/articles/Plotting_graphs.html

van Lissa, C. J. (2023b). tidySEM: Tidy structural equation modeling. https://CRAN.
R-project.org/package=tidySEM

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Thériault. (2023). lavaanExtra: Convenience Functions for Package lavaan. Journal of Open Source Software, 8(90), 5701. https://doi.org/10.
21105/joss.05701.

10

https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=lavaanPlot
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.21105/joss.05466
https://cjvanlissa.github.io/tidySEM/articles/Plotting_graphs.html
https://cjvanlissa.github.io/tidySEM/articles/Plotting_graphs.html
https://CRAN.R-project.org/package=tidySEM
https://CRAN.R-project.org/package=tidySEM
https://ggplot2.tidyverse.org
https://doi.org/10.21105/joss.05701
https://doi.org/10.21105/joss.05701

	Summary
	Statement of need
	Usage
	Tables
	Figures

	Availability
	Acknowledgements
	References

