
hdlib: A Python library for designing Vector-Symbolic
Architectures
Fabio Cumbo 1¶, Emanuel Weitschek 2, and Daniel Blankenberg 1,3

1 Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United
States of America 2 Department of Engineering, Uninettuno University, Rome, Italy 3 Department of
Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University,
Cleveland, Ohio, United States of America ¶ Corresponding author

DOI: 10.21105/joss.05704

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @mahfuz05062
• @anilbey

Submitted: 03 July 2023
Published: 11 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Vector-Symbolic Architectures (VSA, a.k.a. Hyperdimensional Computing) is an emerging
computing paradigm that works by combining vectors in a high-dimensional space for repre-
senting and processing information (Kanerva, 2014, 2009). This approach has recently shown
promise in various domains for dealing with different kind of computational problems, including
artificial intelligence (Haputhanthri et al., 2022; Osipov et al., 2022), cognitive science (Gayler,
2004; Graben et al., 2022), robotics (Neubert et al., 2019), natural language processing
(Quiroz-Mercado et al., 2020), bioinformatics (Chen & Imani, 2022; Cumbo et al., 2020; Kim
et al., 2020; Poduval et al., 2021), medical informatics (Lagunes & Lee, 2018; Ni et al., 2022),
cheminformatics (Jones et al., 2023; Ma et al., 2022), and internet of things (Simpkin et al.,
2020) among other scientific disciplines (Schlegel et al., 2022).

Here we present hdlib, a Python library for designing Vector-Symbolic Architectures. Its code
is available on GitHub at https://github.com/cumbof/hdlib and it is distributed under the MIT
license as a Python package through PyPI (pip install hdlib) and Conda on the conda-forge
channel (conda install -c conda-forge hdlib). GitHub releases are also available on Zenodo at
https://doi.org/10.5281/zenodo.7996502. Documentation with examples of how to use the
library is also available at https://github.com/cumbof/hdlib/wiki.

Statement of need
The need for a general framework for designing vector-symbolic architectures is driven by
the increasing success of the hyperdimensional computing paradigm for addressing complex
problems in different scientific domains.

The design of such architectures is usually a time consuming task which requires the tuning of
multiple parameters that are dependent upon the input data. By providing a general framework,
here called hdlib, researchers can focus on the creative aspects of the architecture design,
rather than being burdened by low-level implementation details.

Despite the presence of a few existing libraries for building vector-symbolic architectures (Heddes
et al., 2023; Kang et al., 2022; Simon et al., 2022), the development of hdlib was driven by
the need to offer increased flexibility and a more intuitive interface to complex abstractions,
thereby facilitating a wider adoption in the research community. It not only consolidates most
of the features from the existing libraries but also introduces novel functionalities which are
easily accessible through a set of abstractions and reusable components as described in the
following section, enabling rapid prototyping and experimentation with various architectural
configurations.

Cumbo et al. (2023). hdlib: A Python library for designing Vector-Symbolic Architectures. Journal of Open Source Software, 8(89), 5704.
https://doi.org/10.21105/joss.05704.

1

https://orcid.org/0000-0003-2920-5838
https://orcid.org/0000-0002-8045-2925
https://orcid.org/0000-0002-6833-9049
https://doi.org/10.21105/joss.05704
https://github.com/openjournals/joss-reviews/issues/5704
https://github.com/cumbof/hdlib
https://doi.org/10.5281/zenodo.8331296
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/mahfuz05062
https://github.com/anilbey
https://creativecommons.org/licenses/by/4.0/
https://github.com/cumbof/hdlib
https://doi.org/10.5281/zenodo.7996502
https://github.com/cumbof/hdlib/wiki
https://doi.org/10.21105/joss.05704


Library overview
hdlib provides a comprehensive set of modules summarized in Figure 1.

hdlib.space

hdlib.space.Vector Classhdlib.space.Space Class

from hdlib.space import Space from hdlib.space import Vector

hdlib.arithmetic

from hdlib.arithmetic import bind, bundle, permute

hdlib.model.Model Class

hdlib.model

from hdlib.model import Model1

2

3

 __init__ size int, levels int, vtype str

fit points list, labels list

predict test_indices list, retrain int,
distance_method str

cross_val_predict points list, labels list, cv int, retrain int,
distance_method str, n_jobs int

auto_tune points list, labels list, size_range range,
levels_range range, distance_method str,
metric str, cv int, retrain int, n_jobs int

stepwise_regression

backward
forward

points list, features list, labels list,
method str, cv int, distance_method str,
retrain int, n_jobs int, metric str,
threshold float, uncertainty float,
stop_if_worse bool

name str, size int,
vector numpy.ndarray,
vtype str, tags list

vector Vector,
method str

 __init__

dist

bind vector Vector

bundle vector Vector

permute rotate_by int

size int, vtype str

/

 __init__

memory

get names list, tags list
insert vector Vector

remove name str
find vector Vector,

threshold float,
method str

Figure 1: Overview of the three main modules available in hdlib: hdlib.space (point 1) providing
the Space and Vector classes, hdlib.arithmetic (point 2) providing the bind, bundle, and permute

arithmetic operations, and hdlib.model (point 3) providing the Model class for building machine learning
models based on the hyperdimensional computing paradigm.

hdlib.space

The library provides the Space and Vector classes under hdlib.space (see Figure 1 point 1)
for building the abstract representation of a hyperdimensional space which acts as a container
for a multitude of vectors.

Vector objects

Vectors are characterized by (i) a name or ID, (ii) a dimensionality usually greater than or
equal to 10,000 to guarantee the quasi-orthogonality of random vectors in the high-dimensional
space, (iii) the actual vector, (iv) the type of vector which can be binary or bipolar (i.e., with
a random distribution of 0s and 1s as values or -1s and 1s respectively), and (v) an optional
list of tags used to group vectors with common features.

The Vector class also provides the following three arithmetic functions for manipulating and
combining Vector objects:

• bind: (i) it is invertible, (ii) it distributes over bundling (see bundle), (iii) it preserves
the distance, and (iv) the resulting vector is dissimilar to the input vectors;

• bundle: (i) the resulting vector is similar to the input vectors, (ii) the more vectors are
involved in bundling, the harder it is to determine the component vectors, and (iii) if
several copies of any vector are included in bundling, the resulting vector is closer to the
dominant vector than to the other components;

• permute: (i) it is invertible, (ii) it distributes over bundling and any element-wise
operation, (iii) it preserves the distance, and (iv) the resulting vector is dissimilar to the
input vectors.

It also provides a dist function for computing the distance between two Vector objects in
the hyperdimensional space according to a specific similarity or distance measure (i.e., cosine
similarity, euclidean distance, and hamming distance).

Cumbo et al. (2023). hdlib: A Python library for designing Vector-Symbolic Architectures. Journal of Open Source Software, 8(89), 5704.
https://doi.org/10.21105/joss.05704.

2

https://doi.org/10.21105/joss.05704


The Space object

On the other hand, a Space object is also characterized by a dimensionality and the type of
vectors it can host. It is worth noting that different types of vectors cannot co-exist in the
same space.

It provides several class methods for inserting, removing, and retrieving Vector objects from
the hyperdimensional space (insert, remove, and get respectively as shown in Figure 1 point
1). It also provides a find method that, given an input vector, allows searching for the closest
vector in the space according to a specific similarity or distance measure.

hdlib.arithmetic

hdlib also provides the same set of arithmetic functions also accessible as Vector’s class
methods (i.e., bind, bundle, and permute; see Figure 1 point 2). However, while the result
of calling these functions from a Vector object would be applied in place, invoking the same
functions from the hdlib.arithmetic module would initialize new Vector objects.

hdlib.model

The library also implements a novel supervised learning method initially proposed within the
chopin2 tool https://github.com/cumbof/chopin2 (Cumbo et al., 2020; Cumbo & Weitschek,
2020) for processing massive amounts of genomics data with commodity hardware which took
inspiration from the hierarchical vector-symbolic architecture originally proposed in (Imani et al.,
2018). Here we reimplemented the same procedure which makes use of the hyperdimensional
space, vectors, and the set of arithmetic operations already described above. The classification
model can be easily integrated into other Python routines by simply loading the hdlib.model

module and initializing a Model class instance (see Figure 1 point 3) by specifying the vectors
dimensionality and the number of level vectors (i.e., the actual size of vectors in space, which
is usually 10,000, and the number of vectors used to encode data that strictly depends on the
range of numerical data in the input dataset; see (Cumbo et al., 2020) for additional details).

The Model object

The process of encoding data as described in (Cumbo et al., 2020) is provided with the fit

method, while the classification model is built and evaluated through the predict function.

The Model class also provides the cross_val_predict method that internally invokes the
predict function on a predefined number of training and test set combinations in order to
cross-validate the classification model.

It also implements a Model class method auto_tune that must be called right after the
initialization of the model object. It allows performing a parameter sweep analysis on size

and levels to automatically establish the best vector dimensionality and the most suitable
number of level vectors for a given dataset over specific numerical ranges (please have a look
at the official documentation for additional details).

It also implements a stepwise regression class method stepwise_regression that provides a
backward variable elimination and a forward variable selection technique for selecting relevant
features in a dataset. As a result of calling this method, a dictionary with an importance score
for each feature is returned as well as the best accuracy reached for each importance score (lower
is better in the case of method="backward", higher is better in the case of method="forward").

To the best of our knowledge, this is the first attempt of implementing a feature selection
algorithm according to the hyperdimensional computing paradigm.

Please note that a few examples involving the use of the hdlib features are outlined in the
official Wiki at https://github.com/cumbof/hdlib/wiki under the section Examples.

Cumbo et al. (2023). hdlib: A Python library for designing Vector-Symbolic Architectures. Journal of Open Source Software, 8(89), 5704.
https://doi.org/10.21105/joss.05704.

3

https://github.com/cumbof/chopin2
https://github.com/cumbof/hdlib/wiki
https://doi.org/10.21105/joss.05704


References
Chen, H., & Imani, M. (2022). Density-aware parallel hyperdimensional genome sequence

matching. 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 1–4. https://doi.org/10.1109/FCCM53951.2022.9786145

Cumbo, F., Cappelli, E., & Weitschek, E. (2020). A brain-inspired hyperdimensional computing
approach for classifying massive DNA methylation data of cancer. Algorithms, 13(9), 233.
https://doi.org/10.3390/a13090233

Cumbo, F., & Weitschek, E. (2020). An in-memory cognitive-based hyperdimensional approach
to accurately classify DNA-methylation data of cancer. Database and Expert Systems
Applications: DEXA 2020 International Workshops BIOKDD, IWCFS and MLKgraphs,
Bratislava, Slovakia, September 14–17, 2020, Proceedings 31, 3–10. https://doi.org/10.
1007/978-3-030-59028-4_1

Gayler, R. W. (2004). Vector symbolic architectures answer Jackendoff’s challenges for cognitive
neuroscience. arXiv Preprint Cs/0412059. https://doi.org/10.48550/arXiv.cs/0412059

Graben, P. B., Huber, M., Meyer, W., Römer, R., & Wolff, M. (2022). Vector symbolic
architectures for context-free grammars. Cognitive Computation, 1–16. https://doi.org/10.
1007/s12559-021-09974-y

Haputhanthri, D., Osipov, E., Kahawala, S., De Silva, D., Kempitiya, T., & Alahakoon,
D. (2022). Evaluating complex sparse representation of hypervectors for unsupervised
machine learning. 2022 International Joint Conference on Neural Networks (IJCNN), 1–6.
https://doi.org/10.1109/IJCNN55064.2022.9892981

Heddes, M., Nunes, I., Vergés, P., Kleyko, D., Abraham, D., Givargis, T., Nicolau, A., &
Veidenbaum, A. (2023). Torchhd: An open source Python library to support research on
hyperdimensional computing and vector symbolic architectures. https://doi.org/10.48550/
arXiv.2205.09208

Imani, M., Huang, C., Kong, D., & Rosing, T. (2018). Hierarchical hyperdimensional computing
for energy efficient classification. Proceedings of the 55th Annual Design Automation
Conference, 1–6. https://doi.org/10.1109/DAC.2018.8465708

Jones, D., Allen, J. E., Zhang, X., Khaleghi, B., Kang, J., Xu, W., Moshiri, N., & Rosing, T.
S. (2023). HD-bind: Encoding of molecular structure with low precision, hyperdimensional
binary representations. arXiv Preprint arXiv:2303.15604. https://doi.org/10.48550/arXiv.
2303.15604

Kanerva, P. (2014). Computing with 10,000-bit words. 2014 52nd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 304–310. https://doi.org/10.
1109/ALLERTON.2014.7028470

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive Computation, 1, 139–159.
https://doi.org/10.1007/s12559-009-9009-8

Kang, J., Khaleghi, B., Rosing, T., & Kim, Y. (2022). OpenHD: A GPU-powered framework
for hyperdimensional computing. IEEE Transactions on Computers, 71(11), 2753–2765.
https://doi.org/10.1109/TC.2022.3179226

Kim, Y., Imani, M., Moshiri, N., & Rosing, T. (2020). GenieHD: Efficient DNA pattern
matching accelerator using hyperdimensional computing. 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 115–120. https://doi.org/10.23919/
DATE48585.2020.9116397

Lagunes, L., & Lee, C. H. (2018). Cancer screening using biomimetic pattern recognition with
hyper-dimensional structures. 2018 IEEE 18th International Conference on Bioinformatics

Cumbo et al. (2023). hdlib: A Python library for designing Vector-Symbolic Architectures. Journal of Open Source Software, 8(89), 5704.
https://doi.org/10.21105/joss.05704.

4

https://doi.org/10.1109/FCCM53951.2022.9786145
https://doi.org/10.3390/a13090233
https://doi.org/10.1007/978-3-030-59028-4_1
https://doi.org/10.1007/978-3-030-59028-4_1
https://doi.org/10.48550/arXiv.cs/0412059
https://doi.org/10.1007/s12559-021-09974-y
https://doi.org/10.1007/s12559-021-09974-y
https://doi.org/10.1109/IJCNN55064.2022.9892981
https://doi.org/10.48550/arXiv.2205.09208
https://doi.org/10.48550/arXiv.2205.09208
https://doi.org/10.1109/DAC.2018.8465708
https://doi.org/10.48550/arXiv.2303.15604
https://doi.org/10.48550/arXiv.2303.15604
https://doi.org/10.1109/ALLERTON.2014.7028470
https://doi.org/10.1109/ALLERTON.2014.7028470
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1109/TC.2022.3179226
https://doi.org/10.23919/DATE48585.2020.9116397
https://doi.org/10.23919/DATE48585.2020.9116397
https://doi.org/10.21105/joss.05704


and Bioengineering (BIBE), 201–206. https://doi.org/10.1109/BIBE.2018.00046

Ma, D., Thapa, R., & Jiao, X. (2022). MoleHD: Efficient drug discovery using brain inspired
hyperdimensional computing. 2022 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 390–393. https://doi.org/10.1109/BIBM55620.2022.9995708

Neubert, P., Schubert, S., & Protzel, P. (2019). An introduction to hyperdimensional
computing for robotics. KI-Künstliche Intelligenz, 33, 319–330. https://doi.org/10.1007/
s13218-019-00623-z

Ni, Y., Lesica, N., Zeng, F.-G., & Imani, M. (2022). Neurally-inspired hyperdimensional classi-
fication for efficient and robust biosignal processing. Proceedings of the 41st IEEE/ACM In-
ternational Conference on Computer-Aided Design, 1–9. https://doi.org/10.1145/3508352.
3549477

Osipov, E., Kahawala, S., Haputhanthri, D., Kempitiya, T., De Silva, D., Alahakoon, D., &
Kleyko, D. (2022). Hyperseed: Unsupervised learning with vector symbolic architectures.
IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/
TNNLS.2022.3211274

Poduval, P., Zou, Z., Yin, X., Sadredini, E., & Imani, M. (2021). Cognitive correlative
encoding for genome sequence matching in hyperdimensional system. 2021 58th ACM/IEEE
Design Automation Conference (DAC), 781–786. https://doi.org/10.1109/DAC18074.
2021.9586253

Quiroz-Mercado, J. I., Barrón-Fernández, R., & Ramıŕez-Salinas, M. A. (2020). Semantic
similarity estimation using vector symbolic architectures. IEEE Access, 8, 109120–109132.
https://doi.org/10.1109/ACCESS.2020.3001765

Schlegel, K., Neubert, P., & Protzel, P. (2022). A comparison of vector symbolic archi-
tectures. Artificial Intelligence Review, 55(6), 4523–4555. https://doi.org/10.1007/
s10462-021-10110-3

Simon, W. A., Pale, U., Teijeiro, T., & Atienza, D. (2022). HDTorch: Accelerating hyper-
dimensional computing with GP-GPUs for design space exploration. https://doi.org/10.
48550/arXiv.2206.04746

Simpkin, C., Taylor, I., Harborne, D., Bent, G., Preece, A., & Ganti, R. K. (2020). Efficient
orchestration of Node-RED IoT workflows using a vector symbolic architecture. Future
Generation Computer Systems, 111, 117–131. https://doi.org/10.1016/j.future.2020.04.
005

Cumbo et al. (2023). hdlib: A Python library for designing Vector-Symbolic Architectures. Journal of Open Source Software, 8(89), 5704.
https://doi.org/10.21105/joss.05704.

5

https://doi.org/10.1109/BIBE.2018.00046
https://doi.org/10.1109/BIBM55620.2022.9995708
https://doi.org/10.1007/s13218-019-00623-z
https://doi.org/10.1007/s13218-019-00623-z
https://doi.org/10.1145/3508352.3549477
https://doi.org/10.1145/3508352.3549477
https://doi.org/10.1109/TNNLS.2022.3211274
https://doi.org/10.1109/TNNLS.2022.3211274
https://doi.org/10.1109/DAC18074.2021.9586253
https://doi.org/10.1109/DAC18074.2021.9586253
https://doi.org/10.1109/ACCESS.2020.3001765
https://doi.org/10.1007/s10462-021-10110-3
https://doi.org/10.1007/s10462-021-10110-3
https://doi.org/10.48550/arXiv.2206.04746
https://doi.org/10.48550/arXiv.2206.04746
https://doi.org/10.1016/j.future.2020.04.005
https://doi.org/10.1016/j.future.2020.04.005
https://doi.org/10.21105/joss.05704

	Summary
	Statement of need
	Library overview
	hdlib.space
	Vector objects
	The Space object

	hdlib.arithmetic
	hdlib.model
	The Model object


	References

