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Summary
Vector-Symbolic Architectures (VSA, a.k.a. Hyperdimensional Computing) is an emerging
computing paradigm that works by combining vectors in a high-dimensional space for repre-
senting and processing information (Kanerva, 2014, 2009). This approach has recently shown
promise in various domains for dealing with different kind of computational problems, including
artificial intelligence (Haputhanthri et al., 2022; Osipov et al., 2022), cognitive science (Gayler,
2004; Graben et al., 2022), robotics (Neubert et al., 2019), natural language processing
(Quiroz-Mercado et al., 2020), bioinformatics (Chen & Imani, 2022; Cumbo et al., 2020; Kim
et al., 2020; Poduval et al., 2021), medical informatics (Lagunes & Lee, 2018; Ni et al., 2022),
cheminformatics (Jones et al., 2023; Ma et al., 2022), and internet of things (Simpkin et al.,
2020) among other scientific disciplines (Schlegel et al., 2022).

Here we present hdlib, a Python library for designing Vector-Symbolic Architectures. Its code
is available on GitHub at https://github.com/cumbof/hdlib and it is distributed under the MIT
license as a Python package through PyPI (pip install hdlib) and Conda on the conda-forge
channel (conda install -c conda-forge hdlib). GitHub releases are also available on Zenodo at
https://doi.org/10.5281/zenodo.7996502. Documentation with examples of how to use the
library is also available at https://github.com/cumbof/hdlib/wiki.

Statement of need
The need for a general framework for designing vector-symbolic architectures is driven by
the increasing success of the hyperdimensional computing paradigm for addressing complex
problems in different scientific domains.

The design of such architectures is usually a time consuming task which requires the tuning of
multiple parameters that are dependent upon the input data. By providing a general framework,
here called hdlib, researchers can focus on the creative aspects of the architecture design,
rather than being burdened by low-level implementation details.

Despite the presence of a few existing libraries for building vector-symbolic architectures (Heddes
et al., 2023; Kang et al., 2022; Simon et al., 2022), the development of hdlib was driven by
the need to offer increased flexibility and a more intuitive interface to complex abstractions,
thereby facilitating a wider adoption in the research community. It not only consolidates most
of the features from the existing libraries but also introduces novel functionalities which are
easily accessible through a set of abstractions and reusable components as described in the
following section, enabling rapid prototyping and experimentation with various architectural
configurations.
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Library overview
hdlib provides a comprehensive set of modules summarized in Figure 1.

hdlib.space

hdlib.space.Vector Classhdlib.space.Space Class

from hdlib.space import Space from hdlib.space import Vector

hdlib.arithmetic

from hdlib.arithmetic import bind, bundle, permute

hdlib.model.Model Class

hdlib.model

from hdlib.model import Model1

2

3

 __init__ size int, levels int, vtype str

fit points list, labels list

predict test_indices list, retrain int,
distance_method str

cross_val_predict points list, labels list, cv int, retrain int,
distance_method str, n_jobs int

auto_tune points list, labels list, size_range range,
levels_range range, distance_method str,
metric str, cv int, retrain int, n_jobs int

stepwise_regression

backward
forward

points list, features list, labels list,
method str, cv int, distance_method str,
retrain int, n_jobs int, metric str,
threshold float, uncertainty float,
stop_if_worse bool

name str, size int,
vector numpy.ndarray,
vtype str, tags list

vector Vector,
method str

 __init__

dist

bind vector Vector

bundle vector Vector

permute rotate_by int

size int, vtype str

/

 __init__

memory

get names list, tags list
insert vector Vector

remove name str
find vector Vector,

threshold float,
method str

Figure 1: Overview of the three main modules available in hdlib: hdlib.space (point 1) providing
the Space and Vector classes, hdlib.arithmetic (point 2) providing the bind, bundle, and permute

arithmetic operations, and hdlib.model (point 3) providing the Model class for building machine learning
models based on the hyperdimensional computing paradigm.

hdlib.space

The library provides the Space and Vector classes under hdlib.space (see Figure 1 point 1)
for building the abstract representation of a hyperdimensional space which acts as a container
for a multitude of vectors.

Vector objects

Vectors are characterized by (i) a name or ID, (ii) a dimensionality usually greater than or
equal to 10,000 to guarantee the quasi-orthogonality of random vectors in the high-dimensional
space, (iii) the actual vector, (iv) the type of vector which can be binary or bipolar (i.e., with
a random distribution of 0s and 1s as values or -1s and 1s respectively), and (v) an optional
list of tags used to group vectors with common features.

The Vector class also provides the following three arithmetic functions for manipulating and
combining Vector objects:

• bind: (i) it is invertible, (ii) it distributes over bundling (see bundle), (iii) it preserves
the distance, and (iv) the resulting vector is dissimilar to the input vectors;

• bundle: (i) the resulting vector is similar to the input vectors, (ii) the more vectors are
involved in bundling, the harder it is to determine the component vectors, and (iii) if
several copies of any vector are included in bundling, the resulting vector is closer to the
dominant vector than to the other components;

• permute: (i) it is invertible, (ii) it distributes over bundling and any element-wise
operation, (iii) it preserves the distance, and (iv) the resulting vector is dissimilar to the
input vectors.

It also provides a dist function for computing the distance between two Vector objects in
the hyperdimensional space according to a specific similarity or distance measure (i.e., cosine
similarity, euclidean distance, and hamming distance).
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The Space object

On the other hand, a Space object is also characterized by a dimensionality and the type of
vectors it can host. It is worth noting that different types of vectors cannot co-exist in the
same space.

It provides several class methods for inserting, removing, and retrieving Vector objects from
the hyperdimensional space (insert, remove, and get respectively as shown in Figure 1 point
1). It also provides a find method that, given an input vector, allows searching for the closest
vector in the space according to a specific similarity or distance measure.

hdlib.arithmetic

hdlib also provides the same set of arithmetic functions also accessible as Vector’s class
methods (i.e., bind, bundle, and permute; see Figure 1 point 2). However, while the result
of calling these functions from a Vector object would be applied in place, invoking the same
functions from the hdlib.arithmetic module would initialize new Vector objects.

hdlib.model

The library also implements a novel supervised learning method initially proposed within the
chopin2 tool https://github.com/cumbof/chopin2 (Cumbo et al., 2020; Cumbo & Weitschek,
2020) for processing massive amounts of genomics data with commodity hardware which took
inspiration from the hierarchical vector-symbolic architecture originally proposed in (Imani et al.,
2018). Here we reimplemented the same procedure which makes use of the hyperdimensional
space, vectors, and the set of arithmetic operations already described above. The classification
model can be easily integrated into other Python routines by simply loading the hdlib.model

module and initializing a Model class instance (see Figure 1 point 3) by specifying the vectors
dimensionality and the number of level vectors (i.e., the actual size of vectors in space, which
is usually 10,000, and the number of vectors used to encode data that strictly depends on the
range of numerical data in the input dataset; see (Cumbo et al., 2020) for additional details).

The Model object

The process of encoding data as described in (Cumbo et al., 2020) is provided with the fit

method, while the classification model is built and evaluated through the predict function.

The Model class also provides the cross_val_predict method that internally invokes the
predict function on a predefined number of training and test set combinations in order to
cross-validate the classification model.

It also implements a Model class method auto_tune that must be called right after the
initialization of the model object. It allows performing a parameter sweep analysis on size

and levels to automatically establish the best vector dimensionality and the most suitable
number of level vectors for a given dataset over specific numerical ranges (please have a look
at the official documentation for additional details).

It also implements a stepwise regression class method stepwise_regression that provides a
backward variable elimination and a forward variable selection technique for selecting relevant
features in a dataset. As a result of calling this method, a dictionary with an importance score
for each feature is returned as well as the best accuracy reached for each importance score (lower
is better in the case of method="backward", higher is better in the case of method="forward").

To the best of our knowledge, this is the first attempt of implementing a feature selection
algorithm according to the hyperdimensional computing paradigm.

Please note that a few examples involving the use of the hdlib features are outlined in the
official Wiki at https://github.com/cumbof/hdlib/wiki under the section Examples.
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