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Summary:
PyBCI is an open-source Python framework designed to streamline brain-computer interface
(BCI) research. It offers a comprehensive platform for real-time data acquisition, labeling,
classification and analysis. PyBCI is compatible with a wide range of time-series hardware and
software data sources, thanks to its integration with the Lab Streaming Layer (LSL) protocol
(Kothe et al., 2023).

Statement of Need:
BCI research brings together diverse fields like neuroscience, engineering, and data science,
requiring specialized tools for data acquisition, feature extraction, and real-time analysis.
Existing solutions may offer partial functionalities or be cumbersome to use, slowing down the
pace of innovation. PyBCI addresses these challenges by providing a flexible, Python-based
platform aimed at researchers and developers in the BCI domain. Assuming a foundational
understanding of Python, the software serves as a comprehensive solution for both academic
and industry professionals.

Designed to be lightweight and user-friendly, PyBCI emphasizes quick customization and
integrates seamlessly with the Lab Streaming Layer (LSL) for data acquisition and labeling
(Kothe et al., 2023). The platform incorporates reputable machine learning libraries like
PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2015), and Scikit-learn (Pedregosa et
al., 2011), as well as feature extraction tools such as Antropy (Vallat, 2023), NumPy (Oliphant,
2006), and SciPy (Virtanen et al., 2020). This integration allows users to focus more on their
research and less on software development. While a detailed comparison with other software
solutions will follow in the ‘State of the Field’ section, PyBCI sets itself apart through its
emphasis on ease of use and technological integration.

State of the Field:
There are a variety of BCI software packages available, each with its own advantages and
limitations. Notable packages include solutions like OpenViBE (Renard et al., 2010) and
BCI2000 (Schalk et al., 2004) that offer ease of use for those without programming expertise.
BciPy (Memmott et al., 2021), another Python-based platform, provides some level of
customization but does not allow for the easy integration of popular machine learning libraries.
In contrast, PyBCI offers seamless integration with a variety of machine learning libraries and
feature extraction tools. This flexibility makes PyBCI a robust choice for researchers seeking a
tailored, code-based approach to their BCI experiments.
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Software functionality and performance:
PyBCI accelerates the pace of BCI research by streamlining data collection, processing, and
model analysis. It uses the Lab Streaming Layer (LSL) to handle data acquisition and labelling,
allowing for real-time, synchronous data collection from multiple devices (Kothe et al., 2023).
Samples are collected in chunks from the LSL data streams and stored in pre-allocated NumPy
arrays. When in training mode based on a configurable time window before and after each
marker type. When in test mode, data is continuously processed and analysed based on the
global epoch timing settings. For feature extraction, PyBCI leverages the power of NumPy
(Oliphant, 2006), SciPy (Virtanen et al., 2020), and Antropy (Vallat, 2023), robust Python
libraries known for their efficiency in handling numerical operations. Machine learning, a crucial
component of BCI research, is facilitated with PyTorch (Paszke et al., 2019), SciKit-learn
(Pedregosa et al., 2011) and TensorFlow (Abadi et al., 2015). Scikit-learn offers a wide range
of traditional algorithms for classification, including things like regression, and clustering,
while TensorFlow and PyTorch provide comprehensive ecosystems for developing and training
bespoke deep learning machine learning models.

Impact:
By providing a comprehensive, open-source platform for BCI research, PyBCI aims to advance
the field. When integrated with off-the-shelf devices that are LSL-enabled, as well as with
pre-built LSL data viewers and marker delivery systems, PyBCI facilitates the efficient design,
testing, and implementation of advanced BCI experiments.The integration of LSL, PyTorch,
Scikit-learn, TensorFlow, Antropy, NumPy, and SciPy into one platform simplifies the research
process, encouraging innovation and collaboration in the field of brain computer/human
machine interfaces.
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