
CMakePPLang: An object-oriented extension to
CMake
Zachery Crandall 1,2*, Blake Mulnix1,2*, Branden Butler1,2, Theresa L.
Windus 1,2, and Ryan M. Richard 1,2¶

1 Department of Chemistry, Iowa State University, USA 2 Chemical and Biological Sciences, Ames
National Laboratory, USA ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05711

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @bast
• @tianyi93

Submitted: 06 July 2023
Published: 14 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
CMakePPLang is an object-oriented extension to the CMake language written entirely using the
original CMake language, with the goal of making projects built on CMake easier to create and
maintain. That said, CMakePPLang has different coding practices, paradigms, and standards
than the original CMake language, much in the same way that C++ coding differs from C
coding despite some level of interoperability. Currently, CMakePPLang is used within the
CMakePP organization (“CMakePP Organization,” 2023) as the foundation for two in-progress
projects: CMakeTest (CMakeTest, 2023) and CMaize (CMaize, 2022). CMakeTest provides a
solution for unit testing CMake and CMakePPLang code. CMaize is a CMake tool to simplify
interoperability between projects and writing their build systems.

Statement of Need
CMake (CMake, 2023) is an extensible build tool that exceeds at generating build systems for
many combinations of platforms, compilers, and build configurations. CMake has become the
de facto standard tool for building C, C++, and Fortran programs of moderate to large size.
However, as the size of a project increases, the complexity of the CMake build code tends to
increase as well, and the need arises to make building projects with CMake easier and less
error prone. The complexity of builds will also increase as scientific computing moves toward
heterogeneous systems, requiring programs to leverage a combination of CPUs, GPUs, and
other specialized hardware (Richard et al., 2023). Better utilities and extensions in CMake can
help alleviate these issues, but these tools must be able to be designed in a maintainable and
testable way (“Software Quality,” 2005). Object-oriented programming excels at managing and
maintaining large, complex code bases (Ambler, 1998; Wirth, 2006), and there is an increasing
need for this in the CMake language.

Tobias Becker (Becker et al., 2021) recognized these issues and wrote a purely object-oriented
language on top of CMake, called CMake++ (formerly oo-cmake). CMake++ contains an
abundance of CMake extensions. Many of those extensions have direct overlap with extensions
that are part of CMakePPLang. Features include (among many): maps, objects, tasks/promises.
Unfortunately development of CMake++ has largely been done by a single developer and it
appears to have been abandoned, as there have only been two commits since July 2017, both
in 2021.

One of the primary issues with CMake++ is the lack of documentation. While there is some
high-level documentation, there is little to no API or detailed developer documentation. This
makes it very challenging for a new developer to figure out what is going on. Initially, forking
and expanding on CMake++ was considered, but it was determined that it would take similar
time to decipher CMake++ as it would to develop CMakePPLang.

Crandall et al. (2023). CMakePPLang: An object-oriented extension to CMake. Journal of Open Source Software, 8(89), 5711. https:
//doi.org/10.21105/joss.05711.

1

https://orcid.org/0000-0003-3161-9378
https://orcid.org/0000-0001-6065-3167
https://orcid.org/0000-0003-4235-5179
https://doi.org/10.21105/joss.05711
https://github.com/openjournals/joss-reviews/issues/5711
https://github.com/CMakePP/CMakePPLang/
https://doi.org/10.5281/zenodo.8339121
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/bast
https://github.com/tianyi93
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05711
https://doi.org/10.21105/joss.05711


CMakePPLang has been developed to provide extensions to the CMake language which provide
objected-oriented functionality and other quality-of-life improvements. The main features of
CMakePPLang are the object-oriented functionality, strong data typing, addition of a map
structure, and backwards-compatibility with CMake. These features allow for easier general
programming in CMake, which is key to writing complex build tools in the language. Although
CMakePPLang is built on top of CMake, CMakePPLang mostly relies on fairly fundamental
features of the CMake language, so it is versioned independently of CMake using semantic
versioning (Semantic Versioning 2.0.0, 2023).

Basic Usage
CMakePPLang is developed using CMake, so it is inherently backwards-compatible with CMake
code and can be combined with CMake in the same CMakeLists.txt or *.cmake files. To
use CMakePPLang, it is simply included like any other CMake module after it is downloaded
(Figure 1).

Figure 1: Example of including CMakePPLang in an existing CMake file.

Native CMake is a weakly typed language where all values are strings, and, in certain circum-
stances, select values are interpreted as being of another type. A common example is when a
string is used as an argument to CMake’s if statement, where the string is implicitly cast to a
boolean. In practice, this weak typing can lead to subtle, hard-to-detect errors. CMakePPLang
implements strong-typing in order to avoid/catch such errors. An example of weak typing
causing issues is the ambiguity when passing a list as an argument to a function, which
many CMake users are likely familiar with. In CMake’s list(LENGTH function, there are three
different ways to pass a list to the function, yielding three different results as seen in Figure 2.
Looking at the function signature, list(LENGTH <list> <output variable>) (CMake List
Length, 2023), it is unclear which version to use without trial and error. Conversely, using
strong typing with CMakePPLang (Figure 3), it is immediately clear that the variable pointing
to the list should be used from the types of the signature, cpp_list(LENGTH cpp_list list*

int*), where list* is a pointer to a list (colloquially it is the variable containing a list) and
int* is a pointer to an integer where the resulting length will be stored. The other options
now throw errors that prompt the user to reconsider the function signature and types being
passed in.

Figure 2: Three different methods of passing a list to list(LENGTH, showing the results of each call in a
comment on the following line. Only the first call returns the correct list length of three.

Crandall et al. (2023). CMakePPLang: An object-oriented extension to CMake. Journal of Open Source Software, 8(89), 5711. https:
//doi.org/10.21105/joss.05711.

2

https://doi.org/10.21105/joss.05711
https://doi.org/10.21105/joss.05711


Figure 3: Three different methods of passing a list to a function, cpp_list(LENGTH, which wraps
list(LENGTH and provides strong typing. Results of each call are shown in a comment on the proceeding
line. Only the first call is correct and the other two result in errors.

CMakePPLang conceptually has three classifications of types: CMake types, Quasi-CMake
types, and pure CMakePPLang types.

First, CMakePPLang recognizes the types that CMake may interpret a string to be in certain
contexts. These types include: Boolean, Command, File path, Floating-point numbers,
Generator expressions, Integers, and Targets.

Quasi-CMake types are types which conceptually exist in traditional CMake, but are not
explicitly defined. These types are: Description and Type. Descriptions are the subset of strings
that have no other intrinsic type aside from being a string, i.e., they can only be interpreted as
text. Types are string values used to represent the type of an object, in CMakePPLang they
amount to strings reserved for the in-code keywords representing a type, like str for a string,
int for an integer, and desc for a description.

CMakePPLang also defines types that are outside of what can easily be represented in CMake:
Class, Map, and Object. The Class type is used for objects which hold the specification
of a user-defined type. Classes in CMakePPLang can contain attributes and functions and
support inheritance. Instances of these user-defined classes can be created to be used in CMake
modules. Currently, Classes are represented using Maps. An object of the Map type is an
associative array for storing key-value pairs. The CMakePPLang Map provides the same basic
functionality as a C++ std::map (“std::map,” 2023), Python dictionary(“Built-in Types,”
2023), or JavaScript Map (“Map - JavaScript,” 2023). Users can use maps in their code
wherever they see fit, and maps are used in CMakePPLang to hold the state of object instances.
Finally, the Object type is the base class for all user-defined classes. The CMakePPLang Object
defines the default implementations for the equality, copy, and serialization functionalities.

CMakePPLang is designed primarily to provide object-oriented funcionality for tools designed
in CMake. The first step in this process is defining a class (Figure 4). Strong typing of the
member function parameters can be seen in the example as well.

Crandall et al. (2023). CMakePPLang: An object-oriented extension to CMake. Journal of Open Source Software, 8(89), 5711. https:
//doi.org/10.21105/joss.05711.

3

https://doi.org/10.21105/joss.05711
https://doi.org/10.21105/joss.05711


Figure 4: Example of defining a CMakePPLang class, creating an instance, and calling a member function
to print “Hello world!”.

Users can also define a map to hold information, like a map that stores a color value under the
“color” key (Figure 5), along with other relevant values.

Figure 5: Example of creating a CMakePPLang map, adding a key-value pair, and retrieving the value
using the key.

Using these tools, CMakePPLang users can leverage the benefits of object- oriented program-
ming to create more easily maintainable and testable utilities for CMake development.

Acknowledgement
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration. The software was developed in the NWChemEx subproject and the research
was performed at the Ames National Laboratory, which is operated for the US DOE by Iowa
State University under Contract No. DE-AC02-07CH11358.

References
Ambler, S. (1998). A realistic look at object-oriented reuse. In Dr. Dobb’s. http://www.

drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594

Crandall et al. (2023). CMakePPLang: An object-oriented extension to CMake. Journal of Open Source Software, 8(89), 5711. https:
//doi.org/10.21105/joss.05711.

4

http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594
http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594
https://doi.org/10.21105/joss.05711
https://doi.org/10.21105/joss.05711


Becker, T., Hück, A., Sánchez, M., Baratov, R., Loitsch, F., & Remes, J. (2021). CMake++.
https://github.com/toeb/cmakepp

Built-in Types: Mapping Types - dict. (2023). In Python documentation. https://docs.python.
org/3/library/stdtypes.html#mapping-types-dict

CMaize. (2022). CMakePP. https://github.com/CMakePP/CMaize

CMake. (2023). https://cmake.org/

CMake list length. (2023). https://cmake.org/cmake/help/latest/command/list.html#length

CMakePP organization. (2023). In cmakepp.github.io. https://cmakepp.github.io/

CMakeTest. (2023). CMakePP. https://github.com/CMakePP/CMakeTest

Map - JavaScript. (2023). In JavaScript Reference. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Map

Richard, R. M., Keipert, K., Waldrop, J., Keçeli, M., Williams-Young, D., Bair, R., Boschen,
J., Crandall, Z., Gasperich, K., Mahmud, Q. I., Panyala, A., Valeev, E., Dam, H. van,
Jong, W. A. de, & Windus, T. L. (2023). PluginPlay: Enabling exascale scientific
software one module at a time. The Journal of Chemical Physics, 158(18), 184801.
https://doi.org/10.1063/5.0147903

Semantic versioning 2.0.0. (2023). https://semver.org/

Software quality. (2005). In Software engineering: A practitioner’s approach (7th ed., pp.
400–406). Palgrave Macmillan. ISBN: 978-0-07-301933-8

std::map. (2023). In cplusplus.com. https://cplusplus.com/reference/map/map/

Wirth, N. (2006). Good ideas, through the looking glass [computing history]. Computer,
39(1), 28–39. https://doi.org/10.1109/MC.2006.20

Crandall et al. (2023). CMakePPLang: An object-oriented extension to CMake. Journal of Open Source Software, 8(89), 5711. https:
//doi.org/10.21105/joss.05711.

5

https://github.com/toeb/cmakepp
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://github.com/CMakePP/CMaize
https://cmake.org/
https://cmake.org/cmake/help/latest/command/list.html#length
https://cmakepp.github.io/
https://github.com/CMakePP/CMakeTest
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://doi.org/10.1063/5.0147903
https://semver.org/
https://cplusplus.com/reference/map/map/
https://doi.org/10.1109/MC.2006.20
https://doi.org/10.21105/joss.05711
https://doi.org/10.21105/joss.05711

	Summary
	Statement of Need
	Basic Usage
	Acknowledgement
	References

