
PlanetMapper: A Python package for visualising,
navigating and mapping Solar System observations
Oliver R. T. King 1¶ and Leigh N. Fletcher 1

1 School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, United
Kingdom ¶ Corresponding author

DOI: 10.21105/joss.05728

Software
• Review
• Repository
• Archive

Editor: Monica Bobra
Reviewers:

• @steo85it
• @tedjohnson12

Submitted: 14 June 2023
Published: 10 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PlanetMapper is an open source Python package to visualise, process and understand astro-
nomical observations of Solar System objects, such as planets, moons and rings. Astronomers
can use PlanetMapper to ‘navigate’ observations by calculating coordinate values (such as
latitude and longitude) for each pixel in an observed image, and can map observations by
projecting the observed data onto a map of the target body. Calculated values are exportable
and directly accessible through a well documented API, allowing PlanetMapper to be used for
custom analysis and processing. PlanetMapper can also be used to help generate publication
quality figures, and has a Graphical User Interface to significantly simplify the processing
of astronomical data. PlanetMapper can be applied to a wide range of datasets, including
both amateur and professional ground-based observations, and data from space telescopes like
Hubble and JWST.

Statement of need
In order to accurately interpret astronomical observations of objects in the Solar System, it is
crucial to understand the exact geometry and illumination conditions of the observation. Some
of the first questions in analysing a new dataset are working out exactly what you are looking
at, for example:

• How is the planet oriented in the image?
• What are the latitude and longitude coordinates for each pixel?
• How is the planet’s surface illuminated?
• Are points of light in the background sky moons of the target planet, or background

stars?
• What is the line-of-sight velocity of the target’s surface, and what is the associated

doppler correction?

Without answering these kinds of questions, it is often challenging to accurately interpret
the data. However, calculating the appearance of a target body is a complex problem, as it
requires accurate knowledge of both the target and observers position and orientation in space
at specific times. To add to the complexity, non-trivial effects, such as the light travel time
from the target to the observer and stellar aberration must also be accounted for.

The NAIF SPICE Toolkit (Acton et al., 2018) was developed by NASA to provide a standardised
set of ‘SPICE kernels’, datasets containing the positions of Solar System objects, and a set of
tools to interface with these kernels. This toolkit provides low level functions which can be
combined to solve the problem of calculating the appearance of a target body. PlanetMapper
is designed to significantly simplify the use of SPICE for planetary astronomers, effectively
providing a high level interface to the toolkit. For example, the conversion between right

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

1

https://orcid.org/0000-0002-6271-0062
https://orcid.org/0000-0001-5834-9588
https://doi.org/10.21105/joss.05728
https://github.com/openjournals/joss-reviews/issues/5728
https://github.com/ortk95/planetmapper
https://doi.org/10.5281/zenodo.8410701
https://mbobra.github.io
https://orcid.org/0000-0002-5662-9604
https://github.com/steo85it
https://github.com/tedjohnson12
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05728


ascension/declination coordinates (in the sky of the observer) to latitude/longitude coordinates
(on the target body) requires calling ~10 SPICE functions, but can be done in a single function
call with PlanetMapper. PlanetMapper makes use of the SpiceyPy package (Annex et al.,
2020) which provides a Python interface to the low level SPICE toolkit functions.

Planetary astronomers have developed toolkits for image navigation, such as the IDL language
based DRM (Fletcher et al., 2009) and the WinJUPOS windows application for analysing Jupiter
observations (jupos.privat.t-online.de). The USGS ISIS software (Laura et al., 2023) also
provides a comprehensive set of tools for processing and navigating data from specific instru-
ments on some spacecraft missions, but does not support generalised datasets or ground-based
observations. PlanetMapper is the first general purpose Python package for navigating and
mapping astronomical observations, and it is designed to be used with any form of imaging
data observing any Solar System object which has a SPICE kernel available.

Functionality
Publication quality figures can be created with PlanetMapper and the matplotlib package
(Hunter, 2007) - for example, Figure 1 shows a visualisation of the appearance of Saturn at
a specific time. These plots can be used to help visualise and plan observation campaigns,
and to help interpret observations by providing geometric context for data. Information about
the observer-target geometry can also be generated, including data such as calculating the
apparent size of the target and testing if a moon is in eclipse or occultation.

Astronomers can use PlanetMapper to calculate the geometry of an astronomical observation,
and generate a series of ‘backplanes’ which contain the coordinates (latitude/longitude,
illumination angles, ring plane coordinates, velocities etc.) for each pixel in the observation.
These backplanes can be saved to FITS data files for future use, or used directly in Python
code. PlanetMapper contains functions to project observed data to a map (Figure 2), and to
export FITS files containing this mapped data.

The PlanetMapper Graphical User Interface (GUI), shown in Figure 3, allows users to inter-
actively fit, navigate and save observations with no coding required. This GUI can also be
invoked from within Python code, allowing users to easily fit observations within their own
data reduction and processing workflow.

PlanetMapper is actively used in the processing and analysis of observations in JWST Giant
Planets programmes (King, 2023), and has been used to help create data visualisations and
figures. It can work with a wide range of datasets, including those from ground (e.g. VLT)
and space based (e.g. JWST) telescopes, spacecraft missions and amateur observations. The
ability to generate generalised data and plots, such as Figure 1, also makes PlanetMapper well
suited for more general research purposes, even if the user is not specifically working with
astronomical images.

PlanetMapper is tested with both unit and integration tests which run automatically using
GitHub’s continuous integration service. The package is well documented, with all public
methods and functions containing detailed docstrings, and documentation automatically built
at planetmapper.readthedocs.io. PlanetMapper is distributed on PyPI and the code is licensed
under the MIT license.

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

2

http://jupos.privat.t-online.de/index.htm
https://planetmapper.readthedocs.io
https://doi.org/10.21105/joss.05728


Figures

Figure 1: Saturn ‘wireframe’ plot generated with PlanetMapper, visualising the appearance of Saturn
from the Earth on 1 January 2020. This plot was created with a single function call, and all elements are
fully customisable.

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

3

https://doi.org/10.21105/joss.05728


Figure 2: More complex example of PlanetMapper’s functionality. The navigated Jupiter observation
(top left) was mapped (top right) using PlanetMapper. The emission angle backplanes generated with
PlanetMapper are shown in the bottom panels. Jupiter image credit: NASA, ESA, STScI, A. Simon
(Goddard Space Flight Center), and M.H. Wong (University of California, Berkeley) and the OPAL team.

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

4

https://doi.org/10.21105/joss.05728


Figure 3: Screenshot of the PlanetMapper graphical user interface being used to fit a ground-based VLT
observation of Europa (King et al., 2022). The user can adjust the location of Europa’s fitted disc (the
white circle) until it matches Europa’s observed disc. If the observation has embedded WCS information
(about the approximate telescope pointing), the disc position, rotation and size is initialised with the
position derived from the WCS, so often only small manual adjustments to the disc position are needed.

Acknowledgements
PlanetMapper was developed with support from a European Research Council Consolidator
Grant (under the European Union’s Horizon 2020 research and innovation programme, grant
agreement No 723890). Thanks to Mike Roman and Naomi Rowe-Gurney for their suggestions,
beta testing and feedback.

References
Acton, C., Bachman, N., Semenov, B., & Wright, E. (2018). A look towards the future in

the handling of space science mission geometry. Planetary and Space Science, 150, 9–12.
https://doi.org/10.1016/j.pss.2017.02.013

Annex, A. M., Pearson, B., Seignovert, B., Carcich, B. T., Eichhorn, H., Mapel, J. A.,
Forstner, J. L. F. von, McAuliffe, J., Rio, J. D. del, Berry, K. L., Aye, K.-M., Stefko,
M., Val-Borro, M. de, Kulumani, S., & Murakami, S. (2020). SpiceyPy: A pythonic
wrapper for the SPICE toolkit. Journal of Open Source Software, 5(46), 2050. https:
//doi.org/10.21105/joss.02050

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

5

https://doi.org/10.1016/j.pss.2017.02.013
https://doi.org/10.21105/joss.02050
https://doi.org/10.21105/joss.02050
https://doi.org/10.21105/joss.05728


Fletcher, L., Orton, G., Yanamandra-Fisher, P., Fisher, B., Parrish, P., & Irwin, P. (2009).
Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared
imaging. Icarus, 200(1), 154–175. https://doi.org/10.1016/j.icarus.2008.11.019

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

King, O. (2023). JWSTGiantPlanets/pipelines: v1.0.1 (Version v1.0.1). Zenodo. https:
//doi.org/10.5281/zenodo.7896689

King, O., Fletcher, L. N., & Ligier, N. (2022). Compositional mapping of europa using MCMC
modeling of near-IR VLT/SPHERE and galileo/NIMS observations. The Planetary Science
Journal, 3(3), 72. https://doi.org/10.3847/PSJ/ac596d

Laura, J., Acosta, A., Addair, T., Adoram-Kershner, L., Alexander, J., Alexandrov, O.,
Alley, S., Anderson, D., Anderson, J., Anderson, J., Annex, A., Archinal, B., Austin,
C., Backer, J., Barrett, J., Bauck, K., Bauers, J., Becker, K., Becker, T., … Young, A.
(2023). Integrated software for imagers and spectrometers (Version 7.2.0_RC1). Zenodo.
https://doi.org/10.5281/zenodo.7644616

King, & Fletcher. (2023). PlanetMapper: A Python package for visualising, navigating and mapping Solar System observations. Journal of Open
Source Software, 8(90), 5728. https://doi.org/10.21105/joss.05728.

6

https://doi.org/10.1016/j.icarus.2008.11.019
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.7896689
https://doi.org/10.5281/zenodo.7896689
https://doi.org/10.3847/PSJ/ac596d
https://doi.org/10.5281/zenodo.7644616
https://doi.org/10.21105/joss.05728

	Summary
	Statement of need
	Functionality
	Figures
	Acknowledgements
	References

