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Summary

Parafields is a Python package for the generation of stationary Gaussian random fields with well-
defined, known statistical properties. The use of such fields is a key ingredient of simulation
workflows that involve uncertain, spatially heterogeneous parameters. As such, Gaussian
random fields play a dominant role in geostatistics, e.g., in the modelling of particulate matter
concentration, temperature distributions and subsurface flow (Cameletti et al., 2013) (Sain
et al., 2011) (Dodwell et al., 2015). Outside these traditional applications, Gaussian random
fields are also used in biomedical imaging (Penny et al., 2005), material sciences (Torquato
& Haslach Jr, 2002) or within Markov-Chain Monte-Carlo methods in Bayesian estimation
(Scheichl et al., 2017).

Parafields is also able to run in parallel using the Message Passing Interface (MPI) standard
through mpidpy (Dalcin & Fang, 2021). In this case, the computational domain is split and
only the part of the random field relevant to a certain process is generated on that process.
The generation process is implemented in a performance-oriented C++ backend library and
exposed in Python though an intuitive Python interface.

Statement of need

The simulation of large-scale Gaussian random fields is a computationally challenging task,
particularly if the field being considered has a short correlation length when compared to its
computational domain.

However, when the random field in question is stationary, that is, its covariance function is
translation invariant, fast and exact methods of simulation based on the Fast Fourier Transform
have been proposed by Dietrich & Newsam (1997) and Wood & Chan (1994). These can
outperform more traditional, factorization-based methods in terms of both scaling as well as
absolute performance.

Through the combination of an efficient C++ backend with an easy-to-use Python interface, this
package aims to make these methods accessible for integration into existing workflows. This
separation also allows the package to support large-scale, peformance-oriented applications, as
well as providing a means to quickly generate working prototypes using just a few lines.

Other packages for the generation of stationary Gaussian processes exist, e.g., the R package
lgcp (Davies & Bryant, 2013), the Julia package GaussianRandomFields.jl (Robbe, 2023),
and the Python package GSTools (Miiller et al., 2022). In comparison with these alternative
packages, parafields is specifically designed and adapted to the sampling of very large Gaussian
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random fields within a HPC workflow. This was a major concern in the development of the
backend and is among other things, reflected in the ability to create Gaussian processes in an
MPI-distributed fashion.

Implementation

Parafields has over ten years of development history: it was first implemented as an extension
to the Dune framework (Bastian et al., 2021) for the numerical solution of partial differential
equations. This restricted the potential userbase to users of that software framework, although
there was quite some interest in the software from outside this community. In 2022, we started
a huge refactoring: the previous C++ code base (Klein, 2017) was rewritten to have a weaker
dependency on Dune, which e.g. included a rewrite of the CMake build system (Klein & Kempf,
2022). In order to open up to a wider userbase, a Python interface written in pybind11 (Jakob
et al., 2017) was added.

When engineering the Python package, we put special emphasis on the following usability
aspects: installability, customizability and embedding into existing user workflows.

The recommended installation procedure for parafields is perfectly aligned with the state-
of-the-art of the Python language: it is installable through pip and automatically compiles
using the CMake build system of the project through scikit-build (Fillion-Robin et al., 2018).
Required dependencies of the C++ library are automatically fetched and built in the required
configuration. For sequential usage we also provide pre-compiled Python wheels. They are
built against the sequential MPI stub library FakeMPI (Kempf & PetSc Developers, 2022),
which allows us to build the sequential and the parallel version from the same code base. Users
who want to leverage MPI through mpi4py will instead build the package from source against
their system MPI library.

It was a goal of the design of the Python API to expose as much of the flexibility of the
underlying C++ framework as possible. In order to do so, we use pybind11l's capabilities to pass
Python callables to the C++ backend. This allows users to, e.g., implement custom covariance
functions or use different random number generators. Furthermore, we acknowledge the fact
that many Python users write scientific applications within Jupyter: our fields render nicely
as images in Jupyter and field generation can optionally be configured through an interactive
widget frontend within Jupyter.
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