The Journal of Open Source Software

DOI: 10.21105/joss.05735

Software
= Review 7
= Repository &
= Archive 7

Editor: Patrick Diehl 2
Reviewers:

= @shahmoradi

= Q@gchure

Submitted: 03 July 2023
Published: 18 December 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

parafields: A generator for distributed, stationary
Gaussian processes

Dominic Kempf® 12*1, Ole Klein ®**, Robert Kutri ®23, Robert

Scheichl ®23, and Peter Bastian?

1 Scientific Software Center, Heidelberg University, Heidelberg, Germany 2 Interdisciplinary Center for
Scientific Computing, Heidelberg University, Heidelberg, Germany 3 Institute for Mathematics,
Heidelberg University, Heidelberg, Germany 4 Independent Researcher, Heidelberg, Germany §
Corresponding author * These authors contributed equally.

Summary

Parafields is a Python package for the generation of stationary Gaussian random fields with well-
defined, known statistical properties. The use of such fields is a key ingredient of simulation
workflows that involve uncertain, spatially heterogeneous parameters. As such, Gaussian
random fields play a dominant role in geostatistics, e.g., in the modelling of particulate matter
concentration, temperature distributions and subsurface flow (Cameletti et al., 2013) (Sain
et al., 2011) (Dodwell et al., 2015). Outside these traditional applications, Gaussian random
fields are also used in biomedical imaging (Penny et al., 2005), material sciences (Torquato
& Haslach Jr, 2002) or within Markov-Chain Monte-Carlo methods in Bayesian estimation
(Scheichl et al., 2017).

Parafields is also able to run in parallel using the Message Passing Interface (MPI) standard
through mpidpy (Dalcin & Fang, 2021). In this case, the computational domain is split and
only the part of the random field relevant to a certain process is generated on that process.
The generation process is implemented in a performance-oriented C++ backend library and
exposed in Python though an intuitive Python interface.

Statement of need

The simulation of large-scale Gaussian random fields is a computationally challenging task,
particularly if the field being considered has a short correlation length when compared to its
computational domain.

However, when the random field in question is stationary, that is, its covariance function is
translation invariant, fast and exact methods of simulation based on the Fast Fourier Transform
have been proposed by Dietrich & Newsam (1997) and Wood & Chan (1994). These can
outperform more traditional, factorization-based methods in terms of both scaling as well as
absolute performance.

Through the combination of an efficient C++ backend with an easy-to-use Python interface, this
package aims to make these methods accessible for integration into existing workflows. This
separation also allows the package to support large-scale, peformance-oriented applications, as
well as providing a means to quickly generate working prototypes using just a few lines.

Other packages for the generation of stationary Gaussian processes exist, e.g., the R package
lgcp (Davies & Bryant, 2013), the Julia package GaussianRandomFields.jl (Robbe, 2023),
and the Python package GSTools (Miiller et al., 2022). In comparison with these alternative
packages, parafields is specifically designed and adapted to the sampling of very large Gaussian

Kempf et al. (2023). parafields: A generator for distributed, stationary Gaussian processes. Journal of Open Source Software, 8(92), 5735. 1
https://doi.org/10.21105/joss.05735.

https://orcid.org/0000-0002-6140-2332
https://orcid.org/0000-0002-3295-7347
https://orcid.org/0009-0004-8123-4673
https://orcid.org/0000-0001-8493-4393
https://doi.org/10.21105/joss.05735
https://github.com/openjournals/joss-reviews/issues/5735
https://github.com/parafields/parafields
https://doi.org/10.5281/zenodo.10355636
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/shahmoradi
https://github.com/gchure
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05735

The Journal of Open Source Software

random fields within a HPC workflow. This was a major concern in the development of the
backend and is among other things, reflected in the ability to create Gaussian processes in an
MPI-distributed fashion.

Implementation

Parafields has over ten years of development history: it was first implemented as an extension
to the Dune framework (Bastian et al., 2021) for the numerical solution of partial differential
equations. This restricted the potential userbase to users of that software framework, although
there was quite some interest in the software from outside this community. In 2022, we started
a huge refactoring: the previous C++ code base (Klein, 2017) was rewritten to have a weaker
dependency on Dune, which e.g. included a rewrite of the CMake build system (Klein & Kempf,
2022). In order to open up to a wider userbase, a Python interface written in pybind11 (Jakob
et al., 2017) was added.

When engineering the Python package, we put special emphasis on the following usability
aspects: installability, customizability and embedding into existing user workflows.

The recommended installation procedure for parafields is perfectly aligned with the state-
of-the-art of the Python language: it is installable through pip and automatically compiles
using the CMake build system of the project through scikit-build (Fillion-Robin et al., 2018).
Required dependencies of the C++ library are automatically fetched and built in the required
configuration. For sequential usage we also provide pre-compiled Python wheels. They are
built against the sequential MPI stub library FakeMPI (Kempf & PetSc Developers, 2022),
which allows us to build the sequential and the parallel version from the same code base. Users
who want to leverage MPI through mpi4py will instead build the package from source against
their system MPI library.

It was a goal of the design of the Python API to expose as much of the flexibility of the
underlying C++ framework as possible. In order to do so, we use pybind11l's capabilities to pass
Python callables to the C++ backend. This allows users to, e.g., implement custom covariance
functions or use different random number generators. Furthermore, we acknowledge the fact
that many Python users write scientific applications within Jupyter: our fields render nicely
as images in Jupyter and field generation can optionally be configured through an interactive
widget frontend within Jupyter.

Acknowledgments

The authors thank all contributors of the dune-randomfield project for their valuable contri-
butions that are now part of the parafields-core library. Dominic Kempf is employed by the
Scientific Software Center of Heidelberg University which is funded as part of the Excellence
Strategy of the German Federal and State Governments. Ole Klein's work is supported by
the federal ministry of education and research of Germany (Bundesministerium fiir Bildung
und Forschung) and the ministry of science, research and arts of the federal state of Baden-
Wiirttemberg (Ministerium fiir Wissenschaft, Forschung und Kunst Baden-Wiirttemberg).

Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., Graser, C., Griininger,
C., Kempf, D., Kléfkorn, R., Ohlberger, M., & Sander, O. (2021). The dune framework:
Basic concepts and recent developments. Computers & Mathematics with Applications,
81, 75-112. https://doi.org/10.1016/j.camwa.2020.06.007

Cameletti, M., Lindgren, F., Simpson, D., & Rue, H. (2013). Spatio-temporal modeling of
particulate matter concentration through the SPDE approach. AStA Advances in Statistical
Analysis, 97, 109-131. https://doi.org/10.1007/s10182-012-0196-3

Kempf et al. (2023). parafields: A generator for distributed, stationary Gaussian processes. Journal of Open Source Software, 8(92), 5735. 2
https://doi.org/10.21105/joss.05735.

https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1007/s10182-012-0196-3
https://doi.org/10.21105/joss.05735

The Journal of Open Source Software

Dalcin, L., & Fang, Y.-L. L. (2021). mpidpy: Status update after 12 years of development.
Computing in Science & Engineering, 23(4), 47-54. https://doi.org/10.1109/MCSE.2021.
3083216

Davies, T. M., & Bryant, D. (2013). On circulant embedding for Gaussian random fields in R.
Journal of Statistical Software, 55(9), 1-21. https://doi.org/10.18637 /jss.v055.i09

Dietrich, C. R., & Newsam, G. N. (1997). Fast and exact simulation of stationary Gaussian
processes through circulant embedding of the covariance matrix. SIAM Journal on Scientific
Computing, 18(4), 1088-1107. https://doi.org/10.1137/s1064827592240555

Dodwell, T. J., Ketelsen, C., Scheichl, R., & Teckentrup, A. L. (2015). A hierarchical multilevel
Markov chain Monte Carlo algorithm with applications to uncertainty quantification in
subsurface flow. SIAM/ASA Journal on Uncertainty Quantification, 3(1), 1075-1108.
https://doi.org/10.1137/130915005

Fillion-Robin, J.-C., McCormick, M., Padron, O., Smolens, M., Grauer, M., & Sarahan,
M. (2018). jcfr/scipy_2018_scikit-build_talk: SciPy 2018 talk | scikit-build: A build
system generator for CPython C/C++/Fortran/Cython extensions (Version v1.0). Zenodo.
https://doi.org/10.5281/zenodo.2565368

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 — seamless operability between
C++11 and Python.

Kempf, D., & PetSc Developers, the. (2022). FakeMPI - a sequential MPI stub.

Klein, O. (2017). Dune-randomfield - generation of Gaussian random fields in arbitrary
dimensions, based on circulant embedding.

Klein, O., & Kempf, D. (2022). parafields-core. In GitHub repository. GitHub. https:
//github.com /parafields/parafields-core

Miiller, S., Schiiler, L., Zech, A., & HeBe, F. (2022). GSTools v1.3: A toolbox for geostatistical
modelling in Python. Geoscientific Model Development, 15(7), 3161-3182. https://doi.
org/10.5194 /gmd-15-3161-2022

Penny, W. D., Trujillo-Barreto, N. J., & Friston, K. J. (2005). Bayesian fMRI time series
analysis with spatial priors. Neurolmage, 24(2), 350-362. https://doi.org/10.1016/].
neuroimage.2004.08.034

Robbe, P. (2023). GaussianRandomFields.jl: A Julia package to generate and sample from
Gaussian random fields. Journal of Open Source Software, 8(89), 5595. https://doi.org/
10.21105/joss.05595

Sain, S. R., Furrer, R., & Cressie, N. (2011). A spatial analysis of multivariate output from
regional climate models. The Annals of Applied Statistics, 150-175. https://doi.org/10.
1214/10-AOAS369

Scheichl, R., Stuart, A. M., & Teckentrup, A. L. (2017). Quasi-monte carlo and multilevel
Monte Carlo methods for computing posterior expectations in elliptic inverse problems.
SIAM/ASA Journal on Uncertainty Quantification, 5(1), 493-518. https://doi.org/10.
1137/16m1061692

Torquato, S., & Haslach Jr, H. (2002). Random heterogeneous materials: Microstructure and
macroscopic properties. Appl. Mech. Rev., 55(4), B62-B63. https://doi.org/10.1115/1.
1483342

Wood, A. T., & Chan, G. (1994). Simulation of stationary Gaussian processes in [0, 1] d.
Journal of Computational and Graphical Statistics, 3(4), 409-432. https://doi.org/10.
2307/1390903

Kempf et al. (2023). parafields: A generator for distributed, stationary Gaussian processes. Journal of Open Source Software, 8(92), 5735. 3
https://doi.org/10.21105/joss.05735.

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.18637/jss.v055.i09
https://doi.org/10.1137/s1064827592240555
https://doi.org/10.1137/130915005
https://doi.org/10.5281/zenodo.2565368
https://github.com/parafields/parafields-core
https://github.com/parafields/parafields-core
https://doi.org/10.5194/gmd-15-3161-2022
https://doi.org/10.5194/gmd-15-3161-2022
https://doi.org/10.1016/j.neuroimage.2004.08.034
https://doi.org/10.1016/j.neuroimage.2004.08.034
https://doi.org/10.21105/joss.05595
https://doi.org/10.21105/joss.05595
https://doi.org/10.1214/10-AOAS369
https://doi.org/10.1214/10-AOAS369
https://doi.org/10.1137/16m1061692
https://doi.org/10.1137/16m1061692
https://doi.org/10.1115/1.1483342
https://doi.org/10.1115/1.1483342
https://doi.org/10.2307/1390903
https://doi.org/10.2307/1390903
https://doi.org/10.21105/joss.05735

	Summary
	Statement of need
	Implementation
	Acknowledgments

