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Summary
In educational and psychological research, we are often interested in discrete latent states of
individuals responding to an assessment (e.g., proficiency or non-proficiency on educational
standards, the presence or absence of a psychological disorder). Diagnostic classification
models (DCMs; also called cognitive diagnostic models [CDMs]) are a type of psychometric
model that facilitates these inferences (Rupp et al., 2010; von Davier & Lee, 2019). DCMs
are multi-dimensional, meaning that we can classify respondents on multiple latent attributes
within a profile of skills. A Q-matrix is then used to define which items on the assessment
measure each attribute. Using the pre-defined latent profiles and the Q-matrix, DCMs then
estimate the probability that respondents are in profile, or have the corresponding pattern
of proficiency, or presence, of the attributes. This means that DCMs are able to provide
fine-grained feedback on specific skills that may need additional instruction in an educational
context, or particular symptoms that may be contributing to a diagnosis in a psychological
context. Finally, because DCMs are classifying respondents rather than placing them along a
performance continuum, these models are able to achieve more reliable results with shorter
test lengths (Templin & Bradshaw, 2013), reducing the burden on respondents.

Given these benefits, the goal of measr is to make DCMs more accessible to applied researchers
and practitioners by providing a simple interface for estimating and evaluating DCMs.

Statement of need
measr is an R package developed to easily estimate and evaluate DCMs in applied settings.
Despite the ability of DCMs to provide reliable, fine-grained feedback on specific skills, these
models have not been widely used for research or operational programs. This is due in large
part to limitations in existing software for estimating and evaluating DCMs (Ravand & Baghaei,
2020; Sessoms & Henson, 2018). Typically, DCMs are estimated with a maximum likelihood
estimator and then evaluated using limited-information fit indices (e.g., Liu et al., 2016).
This is the approach taken when using Mplus (e.g., Templin & Hoffman, 2013) and popular
R packages GDINA (Ma & de la Torre, 2020) and CDM (George et al., 2016). However,
as the name “limited-information” implies, these methods only look at limited relationships
between the items, such as univariate or bivariate relationships. This means that higher-level
relationships between the items cannot be evaluated (e.g., relationships between triplets of
items).

Bayesian estimation methods offer more robust methods for evaluating model fit through
posterior predictive checks (Park et al., 2015; Thompson, 2019). To date, there are three R
packages that offer Bayesian estimation of DCMs: dina (Culpepper, 2015), hmcdm (Zhang et
al., 2023), and blatent (Templin, 2020). However, all of these packages only estimate a single
type of DCM, severely limiting their generalizability to a wide range of applications.
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The measr package seeks to overcome the limitations of existing software options by serving
as an interface to the Stan probabilistic programming language (Carpenter et al., 2017). With
Stan as a backend, measr can estimate a wide variety of DCMs. Primarily, measr supports the
estimation of the loglinear cognitive diagnostic model (LCDM). However, because the LCDM is
a general DCM that subsumes many subtypes (Henson et al., 2008), measr also supports other
DCMs such as the deterministic inputs, noisy “and” gate (DINA) model (de la Torre & Douglas,
2004) and the deterministic inputs, noisy “or” gate (DINO) model (Templin & Henson, 2006).
After estimation, measr provides model evaluations using both limited-information indices and
posterior predictive checks. By providing straightforward estimation and evaluation of DCMs,
measr makes these models more accessible to practitioners and applied researchers. Thus, with
measr, users get the power of Bayesian methods for model evaluation, compatibility with other
packages in the larger Stan ecosystem, and a user-friendly interface so that knowledge of the
Stan language is not required. However, models estimated with measr also include the fitted
Stan object, so users can access it if they are familiar with Stan and prefer to work with that
object. Additionally, the Stan code used to estimate the model is also returned so that users
familiar with the Stan language can use that code as a starting point for writing their own
customized models.
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