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Summary
The purpose of pvOps is to support empirical evaluations of data collected in the field related
to the operations and maintenance (O&M) of photovoltaic (PV) power plants. pvOps presently
contains modules that address the diversity of field data, including text-based maintenance
logs, current-voltage (IV) curves, and timeseries of production information. The package
functions leverage machine learning, visualization, and other techniques to enable cleaning,
processing, and fusion of these datasets. These capabilities are intended to facilitate easier
evaluation of field patterns and extraction of relevant insights to support reliability-related
decision-making for PV sites. The open-source code, examples, and instructions for installing
the package through PyPI can be accessed through the GitHub repository.

Statement of Need
Continued interest in PV deployment across the world has resulted in increased awareness of
needs associated with managing reliability and performance of these systems during operation.
Current open-source packages for PV analysis focus on theoretical evaluations of solar power
simulations (e.g., pvlib (Holmgren et al., 2018)), data cleaning and feature development for
production data (e.g. pvanalytics (Perry et al., 2022)), specific use cases of empirical evalua-
tions (e.g., RdTools (Deceglie et al., 2018) and Pecos (Klise & Stein, 2016) for degradation
analysis), or analysis of electroluminescene images (e.g., PVimage (Pierce et al., 2020)); see
openpvtools for a list of additional open source PV packages. However, a general package
that can support data-driven, exploratory evaluations of diverse field collected information
is currently lacking. For example, a maintenance log that describes an inverter failure may
be temporally correlated to a dip in production levels. Identifying such relationships across
different types of field data can improve understanding of the impacts of certain types of
failures on a PV plant. To address this gap, we present pvOps, an open-source Python package
that can be used by researchers and industry analysts alike to evaluate and extract insights
from different types of data routinely collected during PV field operations.

PV data collected in the field varies greatly in structure (e.g., timeseries and text records)
and quality (e.g., completeness and consistency). The data available for analysis is frequently
semi-structured. Furthermore, the level of detail collected between different owners/operators
might vary. For example, some may capture a general start and end time for an associated
event whereas others might include additional time details for different resolution activities.
This diversity in data types and structures often leads to data being under-utilized due to the
amount of manual processing required. To address these issues, pvOps provides a suite of
data processing, cleaning, and visualization methods to leverage insights across a broad range
of data types, including operations and maintenance records, production timeseries, and IV
curves. The functions within pvOps enable users to better parse available data to understand
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patterns in outages and production losses.

Package Overview
The following table summarizes the four modules within pvOps by presenting: the type of data
they analyze, example data features, and highlights of relevant functions.

Table 1. Summary of modules and functions within ‘pvOps‘

Module Type of data Example data features Highlights of functions
text O&M records timestamps, issue

description, issue
classification

fill data gaps in dates and
categorical records, visualize
word clusters and patterns
over time

timeseries Production
data

site, timestamp, power
production, irradiance

estimate expected energy
with multiple models,
evaluate inverter clipping

text2time O&M records
and production
data

see entries for text
and timeseries

modules above

analyze overlaps between
O&M and production
(timeseries) records,
visualize overlaps between
O&M records and
production data

iv IV records current, voltage,
irradiance, temperature

simulate IV curves with
physical faults, extract
diode parameters from IV
curves, classify faults using
IV curves

The functions within each module can be used to build pipelines that integrate relevant data
processing, fusion, and visualization capabilities to support user endgoals. For example, a
user with IV curve data could build a pipeline that leverages functions within the iv module
to process and extract diode parameters within IV curves as well as train models to support
classifications based on fault type. A pipeline could be also be built that leverages functions
across modules if a user has access to multiple types of data (e.g., both O&M and production
records). A sample end-to-end workflow using pvOps modules could be:

1. Use functions within the text module to systematically review data quality issues within
O&M records, train a machine learning model on available records, and use the model
to estimate possible labels for missing entries

2. Leverage the functions within the timeseries module, use machine learning to develop
their own expected energy models for a given time series of irradiance and system
size details, or use a pre-trained expected energy model (Hopwood & Gunda, 2022) or
leverage industry standard equations as a basis for evaluating possible production losses

3. Couple outputs from the above two analyses (using functions in the text2time module)
based on timestamps to develop summaries and visualizations of production impacts
observed during these periods

The package documentation for pvOps provides thorough examples exploring the various
capabilities of each module. Additional details about the iv module capabilities are captured in
(Hopwood et al., 2020; Hopwood, Stein, et al., 2022) while more information about the design
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and development of the text, timeseries, and text2time modules are captured in (Mendoza
et al., 2021). Key package dependencies of pvOps include pandas (The pandas development
team, 2020), sklearn (Pedregosa et al., 2011), nltk (Bird et al., 2009), and keras (Chollet
& others, 2015) for analysis and matplotlib (Hunter, 2007), seaborn (Waskom, 2021), and
plotly (Plotly Technologies Inc., 2015) for visualization.

Ongoing Development
The pvOps functionality and documentation continues to be improved and updated as new
empirical techniques are identified. For example, research efforts have demonstrated utility of
natural language processing techniques (e.g., topic modeling) and survival analyses to support
evaluation of patterns in O&M records (Gunda et al., 2020). Additional statistical methods,
such as Hidden Markov Modeling, have also been successfully used to support classification of
failures within production data (Hopwood, Patel, et al., 2022). These and other capabilities
will continue to be added to the package to improve its utility for supporting empirical analyses
of field data.
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