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Summary
Zemax OpticStudio (Ansys, Inc) is a commonly used software package for designing optical
setups and performing ray tracing simulations. It offers an Application Programming Interface
(API) but interacting with this API is complex. Consequently, current ray tracing simulations
generally require substantial manual user interaction, which in turn hampers the sharing of
methods between scientists. We have therefore developed ZOSPy, a Python package that
provides an accessible interface as well as unit tests. As a result, ZOSPy enables scientists to
focus more on optical modelling instead of coding and contributes to open science as optical
setups and analyses can easily be shared amongst users.

Statement of need
Ray tracing simulations are widely used to design, optimize and analyze optical systems.
Its applications are diverse, ranging from designing spectrometers (Naeem et al., 2022) or
telescopes (Zhang et al., 2023), to understanding the optics of the human eye (Hong et al.,
2011; Simpson, 2020; van Vught et al., 2022). Moreover, in ophthalmology, ray tracing is
used to optimize the outcomes of cataract surgery (Artal et al., 2023; Canovas & Artal, 2011)
and evaluate the accuracy of ocular radiotherapy (Jaarsma-Coes et al., 2023). These optical
simulations are often performed in OpticStudio, which offers a powerful set of tools to design,
optimize and evaluate optical systems.

Although OpticStudio offers an API, the ZOS-API, using this API in Python is complex and
time-consuming. It involves, for example, establishing a connection with the API through the
.NET framework, casting between .NET and Python datatypes, identifying which constants
need to be set in specific cases, and working around non-uniform methods of parsing the output
(Zemax LLC, 2021). This leads to studies which, in practice, largely rely on user interaction.
Although OpticStudio can perform Monte Carlo analyses, where a large number of random
perturbations of the system are generated and analysed in an automated way, this type of
automation is not suitable when large sets of specific, non-random, combinations of parameters
need to be analysed. In vision science, for example, ray tracing is used to design artificial lenses
for the eye (Ellis, 2001; Holladay et al., 1999), but their evaluation in a large set of patients is
hindered as the anatomical parameters of each subject’s eye need to be entered manually. As
a result, clinical studies typically describe vision-related complaints in cohorts of hundreds of
eyes (Alfonso et al., 2007), but the ray tracing studies aiming to link these outcomes to the
subject’s ocular optics are limited to a small number of eyes (Simpson, 2020; van Vught et al.,
2020).
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With ZOSPy, we provide an easy-to-use and accessible interface to the OpticStudio API,
enabling the user to focus on optical modelling instead of complex coding. As a result, those
who are not familiar with the intricacies of the ZOS-API interface will be able to read and
comprehend scripts that use ZOSPy. Thereby, ZOSPy provides greater accessibility to conducting
analyses in OpticStudio through Python, than directly using the ZOS-API.

Functionality
ZOSPy is, in its most basic form, a Python wrapper around the OpticStudio API. It facilitates the
.NET connection required to connect to OpticStudio through its API, as well as all subsequent
casting of variables between .NET and Python. Additionally, it provides object-oriented
methods to define surfaces and their optical properties. Furthermore, it offers single-line, easy
to understand, methods to perform analyses that return the analysis results in a uniform way.
As a result, ZOSPy enables a straight-forward interaction with OpticStudio and improves code
readability, which facilitates method sharing between scientists.

ZOSPy also offers autocompletion. Interacting with OpticStudio through its API requires the
use of many constants, for example to define the shape of an optical surface or initiate an
analysis. These constants do not autocomplete in IDEs such as PyCharm or VS Code as the
API is built on the .NET framework. As a result, the user has to know the exact name of
each constant, for example ZOSAPI.Analysis.Settings.Mtf.MtfTypes.Modulation. ZOSPy,
however, includes stubs for all constants and functions, enabling full autocompletion.

Finally, ZOSPy offers a set of unit tests to assure that the software provides correct results.
These tests provide means to compare results across ZOSPy and Python versions, as well as
across versions of OpticStudio. The current version of ZOSPy provides basic tests for the most
common optical surfaces and analyses.

Use cases
Multiple examples, from modelling the effect of a coated prism on the polarization of light to
assessing the optical characteristics of the human eye have been contributed to ZOSPy. These
examples provide new users with an easy start with ZOSPy. Part of a simple example of using
ZOSPy to create and evaluate a thick lens is shown below, and the corresponding results are
shown in Figure 1.

# ...

# Make a 10 mm thick lens with a radius of curvature of 30 mm

# and material type BK10

front_surface = oss.LDE.GetSurfaceAt(2)

front_surface.Radius = 30

front_surface.Thickness = 10

front_surface.SemiDiameter = 15

front_surface.Material = "BK10"

back_surface = oss.LDE.InsertNewSurfaceAt(3)

back_surface.Radius = -30

back_surface.Thickness = 29

back_surface.SemiDiameter = 15

# ...

# Render the model

draw3d = zp.analyses.systemviewers.viewer_3d(oss)

van Vught et al. (2024). ZOSPy: optical ray tracing in Python through OpticStudio. Journal of Open Source Software, 9(96), 5756. https:
//doi.org/10.21105/joss.05756.

2

https://zospy.readthedocs.io/simple-example
https://doi.org/10.21105/joss.05756
https://doi.org/10.21105/joss.05756


# Calculate the Point Spread function (PSF) of the system and subsequently

# determine the Modulation Transfer Function (MTF) as a function of

# the location of the imaging plane.

huygens_psf = zp.analyses.psf.huygens_psf(

oss, pupil_sampling="512x512", image_sampling="512x512", normalize=True)

mtf = zp.analyses.mtf.fft_through_focus_mtf(

oss, sampling="512x512", deltafocus=2.5, frequency=3, numberofsteps=51)

Figure 1: Results of the example code. A) The created optical system results in a slightly out of
focus image. B) The Huygens Point Spread Function (PSF) shows the aberrations of the system. C)
The Modulation Transfer Function (MTF) as a function of image plane location shows a maximum at
-1.3 mm, indicating that the system will be in focus when the imaging plane is shifted by 1.3 mm towards
the lens.

Furthermore, ZOSPy has been used in different ophthalmic studies. In one of these studies,
ZOSPy was used to evaluate the relation of ocular anatomy to peripheral visual complaints (van
Vught et al., 2022). In another study, ZOSPy showed that the extent of an intra-ocular tumor
can be overestimated during surgery due to its shadow (Figure 2) (Jaarsma-Coes et al., 2023).

Figure 2: Simulation mimicking the clip surgery for radiotherapy of an intraocular tumor (Jaarsma-
Coes et al., 2023). The ocular geometry including the dimension of the tumor were loaded into
OpticStudio using ZOSPy and the CAD Part: STL object type, after which the retinal illumina-
tion was simulated. The results were rendered using the non-sequential Shaded Model analysis
(zospy.analyses.systemviewers.nsc_shaded_model).
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