
automata: A Python package for simulating and
manipulating automata
Caleb Evans 1 and Eliot W. Robson 2¶

1 Independent Developer, USA 2 Department of Computer Science, University of Illinois, Urbana, IL,
USA ¶ Corresponding author

DOI: 10.21105/joss.05759

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @viech
• @mahfuz05062

Submitted: 19 July 2023
Published: 09 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Automata are abstract machines used to represent models of computation, and are a central
object of study in theoretical computer science (J. E. Hopcroft et al., 2006). Given an input
string of characters over a fixed alphabet, these machines either accept or reject the string. A
language corresponding to an automaton is the set of all strings it accepts. Three important
families of automata in increasing order of generality are the following:

1. Finite-state automata
2. Pushdown automata
3. Turing machines

The automata package facilitates working with these families by allowing simulation of reading
input and higher-level manipulation of the corresponding languages using specialized algorithms.

Statement of need
Automata are a core component of both computer science education and research, seeing
further theoretical work and applications in a wide variety of areas such as computational
biology (Marschall, 2011) and networking (Xu et al., 2016). Consequently, the manipulation
of automata with software packages has seen significant attention from researchers in the past.
The similarly named Mathematica package Automata (Sutner, 2003) implements a number
of algorithms for use with finite-state automata, including regular expression conversion and
binary set operations. In Java, the Brics package (Møller, 2021) implements similar algorithms,
while the JFLAP package (Rodger, 2006) places an emphasis on interactivity and simulation
of more general families of automata.

automata serves the demand for such a package in the Python software ecosystem, implementing
algorithms and allowing for simulation of automata in a manner comparable to the packages
described previously. As a popular high-level language, Python enables significant flexibility
and ease of use that directly benefits many users. The package includes a comprehensive test
suite, support for modern language features (including type annotations), and has a large
number of different automata, meeting the demands of users across a wide variety of use
cases. In particular, the target audience is both researchers that wish to manipulate automata,
and for those in educational contexts to reinforce understanding about how these models of
computation function.

The automata package
The API of the package is designed to mimic the formal mathematical description of each
automaton using built-in Python data structures (such as sets and dicts). This is for ease

Evans, & Robson. (2023). automata: A Python package for simulating and manipulating automata. Journal of Open Source Software, 8(90), 5759.
https://doi.org/10.21105/joss.05759.

1

https://orcid.org/0009-0000-8896-6800
https://orcid.org/0000-0002-1476-6715
https://doi.org/10.21105/joss.05759
https://github.com/openjournals/joss-reviews/issues/5759
https://github.com/caleb531/automata
https://doi.org/10.5281/zenodo.8419571
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/viech
https://github.com/mahfuz05062
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05759


of use by those that are unfamiliar with these models of computation, while also providing
performance suitable for tasks arising in research. In particular, algorithms in the package have
been written for tackling performance on large inputs, incorporating optimizations such as only
exploring the reachable set of states in the construction of a new finite-state automaton. The
package also has native display integration with Jupyter notebooks, enabling easy visualization
that allows students to interact with automata in an exploratory manner.

Of note are some commonly used and technical algorithms implemented in the package for
finite-state automata:

• An optimized version of the Hopcroft-Karp algorithm to determine whether two deter-
ministic finite automata (DFA) are equivalent (Almeida et al., 2010).

• The product construction algorithm for binary set operations (union, intersection, etc.)
on the languages corresponding to two input DFAs (Sipser, 2012).

• Thompson’s algorithm for converting regular expressions to equivalent nondeterministic
finite automata (NFA) (Aho et al., 2006).

• Hopcroft’s algorithm for DFA minimization (J. Hopcroft, 1971; Knuutila, 2001).

• A specialized algorithm for directly constructing a state-minimal DFA accepting a given
finite language (Mihov & Schulz, 2019).

• A specialized algorithm for directly constructing a minimal DFA recognizing strings
containing a given substring (Knuth et al., 1977).

To the authors’ knowledge, this is the only Python package implementing all of the automata
manipulation algorithms stated above.

automata has already been cited in publications (Jeff Erickson & Solomon, 2023), and has
seen use in multiple large undergraduate courses in introductory theoretical computer science
at the University of Illinois Urbana-Champaign (roughly 2000 students since Fall 2021). In
this instance, the package is being used both as part of an autograder utility for finite-state
automata created by students, and as an exploratory tool for use by students directly.

Example usage

Figure 1: A visualization of target_words_dfa. Transitions on characters leading to immediate rejections
are omitted.

The following example is inspired by the use case described in Johnson (2010). We wish to
determine which strings in a given set are within the target edit distance to a reference string.

Evans, & Robson. (2023). automata: A Python package for simulating and manipulating automata. Journal of Open Source Software, 8(90), 5759.
https://doi.org/10.21105/joss.05759.

2

https://doi.org/10.21105/joss.05759


We will first initialize a DFA corresponding to a fixed set of target words over the alphabet of
all lowercase ascii characters.

from automata.fa.dfa import DFA

from automata.fa.nfa import NFA

import string

target_words_dfa = DFA.from_finite_language(

input_symbols=set(string.ascii_lowercase),

language={'these', 'are', 'target', 'words', 'them', 'those'},

)

A visualization of target_words_dfa, generated by the package in a Jupyter notebook, is
depicted in Figure 1.

Next, we construct an NFA recognizing all strings within a target edit distance of a fixed
reference string, and then immediately convert this to an equivalent DFA. The package provides
builtin functions to make this construction easy, and we use the same alphabet as the DFA
that was just created.

words_within_edit_distance_dfa = DFA.from_nfa(

NFA.edit_distance(

input_symbols=set(string.ascii_lowercase),

reference_str='they',

max_edit_distance=2,

)

)

Finally, we take the intersection of the two DFAs we have constructed and read all of the
words in the output DFA into a list. The library makes this straightforward and idiomatic.

found_words_dfa = target_words_dfa & words_within_edit_distance_dfa

found_words = list(found_words_dfa)

The DFA found_words_dfa accepts strings in the intersection of the languages of the DFAs
given as input, and found_words is a list containing this language. Note the power of
this technique is that the DFA words_within_edit_distance_dfa has an infinite language,
meaning we could not do this same computation just using the builtin sets in Python directly
(as they always represent a finite collection), although the syntax used by automata is very
similar to promote intuition.

Acknowledgements
Thanks (in no particular order) to GitHub users YtvwlD, dengl11, Tagl, lewiuberg, Camilo-
MartinezM, abhinavsinha‑adrino, EduardoGoulart1, and khoda81 for their invaluable code
contributions to this project.

References
Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, techniques,

and tools (2nd edition) (pp. 152–155). Addison-Wesley Longman Publishing Co., Inc.
ISBN: 0321486811

Almeida, M., Moreira, N., & Reis, R. (2010). Testing the equivalence of regular languages.
Journal of Automata, Languages and Combinatorics, 15(1/2), 7–25. https://doi.org/10.
25596/jalc-2010-007

Evans, & Robson. (2023). automata: A Python package for simulating and manipulating automata. Journal of Open Source Software, 8(90), 5759.
https://doi.org/10.21105/joss.05759.

3

https://github.com/YtvwlD
https://github.com/dengl11
https://github.com/Tagl
https://github.com/lewiuberg
https://github.com/CamiloMartinezM
https://github.com/CamiloMartinezM
https://github.com/abhinavsinha-adrino
https://github.com/EduardoGoulart1
https://github.com/khoda81
https://doi.org/10.25596/jalc-2010-007
https://doi.org/10.25596/jalc-2010-007
https://doi.org/10.21105/joss.05759


Hopcroft, J. (1971). An n log n algorithm for minimizing states in a finite automaton. In Z.
Kohavi & A. Paz (Eds.), Theory of machines and computations (pp. 189–196). Academic
Press. https://doi.org/10.1016/B978-0-12-417750-5.50022-1

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata theory,
languages, and computation (3rd edition). Addison-Wesley Longman Publishing Co., Inc.
ISBN: 0321455363

Jeff Erickson, E. W. R., Jason Xia, & Solomon, B. (2023). Auto-graded scaffolding exercises
for theoretical computer science. 2023 ASEE Annual Conference & Exposition. https:
//peer.asee.org/42347

Johnson, N. (2010). Damn cool algorithms: Levenshtein automata. In Nick’s Blog. http:
//blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Knuth, D. E., Morris, J. H., Jr., & Pratt, V. R. (1977). Fast pattern matching in strings.
SIAM Journal on Computing, 6(2), 323–350. https://doi.org/10.1137/0206024

Knuutila, T. (2001). Re-describing an algorithm by Hopcroft. Theoretical Computer Science,
250(1), 333–363. https://doi.org/10.1016/S0304-3975(99)00150-4

Marschall, T. (2011). Construction of minimal deterministic finite automata from biological
motifs. Theoretical Computer Science, 412(8), 922–930. https://doi.org/10.1016/j.tcs.
2010.12.003

Mihov, S., & Schulz, K. U. (2019). The minimal deterministic finite-state automaton for a
finite language. In Finite-state techniques: Automata, transducers and bimachines (pp.
253–278). Cambridge University Press. https://doi.org/10.1017/9781108756945.011

Møller, A. (2021). Dk.brics.automaton – finite-state automata and regular expressions for
Java. https://www.brics.dk/automaton/

Rodger, S. H. (2006). JFLAP: An interactive formal languages and automata package. Jones;
Bartlett Publishers, Inc. ISBN: 0763738344

Sipser, M. (2012). Introduction to the theory of computation (pp. 45–47). Cengage Learning.
ISBN: 978-1-133-18781-3

Sutner, K. (2003). Automata, a hybrid system for computational automata theory. In J.-M.
Champarnaud & D. Maurel (Eds.), Implementation and application of automata (pp.
221–227). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44977-9_21

Xu, C., Chen, S., Su, J., Yiu, S. M., & Hui, L. C. K. (2016). A survey on regular expression
matching for deep packet inspection: Applications, algorithms, and hardware platforms.
IEEE Communications Surveys & Tutorials, 18(4), 2991–3029. https://doi.org/10.1109/
COMST.2016.2566669

Evans, & Robson. (2023). automata: A Python package for simulating and manipulating automata. Journal of Open Source Software, 8(90), 5759.
https://doi.org/10.21105/joss.05759.

4

https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://peer.asee.org/42347
https://peer.asee.org/42347
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
https://doi.org/10.1137/0206024
https://doi.org/10.1016/S0304-3975(99)00150-4
https://doi.org/10.1016/j.tcs.2010.12.003
https://doi.org/10.1016/j.tcs.2010.12.003
https://doi.org/10.1017/9781108756945.011
https://www.brics.dk/automaton/
https://doi.org/10.1007/3-540-44977-9_21
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.21105/joss.05759

	Summary
	Statement of need
	The automata package
	Example usage
	Acknowledgements
	References

