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Summary
OpenFEPOPS is an open-source Python implementation of the FEature POint PharmacophoreS
(FEPOPS) molecular similarity technique (Jenkins et al., 2004; Jenkins, 2013; Nettles et al.,
2007) enabling descriptor generation, comparison, and ranking of molecules in virtual screening
campaigns. Ligand based virtual screening (Ripphausen et al., 2011) is a fundamental approach
undertaken to expand hit series or perform scaffold hopping whereby new chemistries and
synthetic routes are made available in efforts to remove undesirable molecular properties and
discover better starting points in the early stages of drug discovery (Hughes et al., 2011).
Typically, these techniques query hit molecules against proprietary, in-house, or publicly available
repositories of small molecules in the hope of finding close matches which will display similar
activities to the query based on the molecular similarity principle which states that similar
molecules should have similar properties and make similar interactions (Cortés-Ciriano et
al., 2020). Often batteries of these similarity measures are used in parallel, helping to score
molecules from many different subjective viewpoints and measures of similarity (Baber et al.,
2006). The central idea behind FEPOPS is reducing the complexity of molecules by merging
of local atomic environments and atom properties into ‘feature points’. This compressed
feature point representation has been used to great effect as noted in literature, helping
researchers identify active and potentially therapeutically valuable small molecules. By default,
OpenFEPOPS uses literature reported parameters which show good performance in retrieval
of active lead- and drug-like small molecules within virtual screening campaigns, with feature
points capturing charge, lipophilicity, and hydrogen bond acceptor and donor status. When
run with default parameters, OpenFepops compactly represents molecules using seven sets
of four feature points, with each feature point encoded into 22 numeric values, resulting in
a compact representation of 616 bytes per molecule. By extension, this allows the indexing
of a compound archive containing 1 million small molecules using 587.5 MB of data. Whilst
more compact representations are readily available, the FEPOPS technique strives to capture
tautomer and conformer information, first through enumeration and then through diversity
driven selection of representative FEPOPS descriptors to capture the diverse states that a
molecule may adopt.

Statement of need
At the time of writing, OpenFEPOPS is the only publicly available implementation of the FEPOPS
molecular similarity technique. Whilst used within industry and referenced extensively in litera-
ture, it has been unavailable to researchers as an open-source tool. We welcome contributions
and collaborative efforts to enhance and expand OpenFEPOPS using the associated GitHub
repository. It is therefore hoped that this will allow the technique to be used not only for
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traditional small molecule molecular similarity, but also in new emerging fields such as protein
design and featurisation of small- and macro-molecules for both predictive and generative
tasks.

Brief software description
Whilst OpenFEPOPS has included functionality for descriptor caching and profiling of libraries,
the core functionality of the package is descriptor generation and scoring.

Descriptor generation:
The OpenFEPOPS descriptor generation process as outlined in Figure 1 follows;

1. Tautomer enumeration
• For a given small molecule, OpenFEPOPS uses RDKit (Landrum, 2013) to iterate

over molecular tautomers. By default, there is no limit to the number of recoverable
tautomers but a limit may be imposed which may be necessary if adapting the
OpenFEPOPS code to large macromolecules and not just small molecules.

2. Conformer enumeration
• For each tautomer, up to 1024 conformers are sampled by either complete enumer-

ation of rotatable bond states (at the literature reported optimum increment of 90
degrees) if there are five or less rotatable bonds, or through random sampling of
1024 possible states if there are more than 5 rotatable bonds.

3. Defining feature points
• The KMeans algorithm (Arthur & Vassilvitskii, 2007) is applied to each conformer

of each tautomer to identify four (by default) representative or central points, into
which the atomic information of neighbouring atoms is collapsed. As standard, the
atomic properties of charge, logP, hydrogen bond donor, and hydrogen bond acceptor
status are collapsed into four feature points per unique tautomer conformation.
The RDKit package is used to calculate these properties with the iterative Gasteiger
charges algorithm (Gasteiger & Marsili, 1980) applied to assign atomic charges,
the Crippen method (Wildman & Crippen, 1999) used to assign atomic logP
contributions, and hydrogen bond acceptors and donors identified with appropriate
(Gillet et al., 1998) SMARTS substructure queries. These feature points are encoded
to 22 numeric values (a FEPOP) comprising four points, each with four properties,
and six pairwise distances between these points. With many FEPOPS descriptors
collected from a single molecule through tautomer and conformer enumeration, this
set of representative FEPOPS should capture every possible state of the original
molecule.

4. Selection of diverse FEPOPS
• From the collection of FEPOPS derived from every tautomer conformation of

a molecule, the K-Medoid algorithm (Park & Jun, 2009) is applied to identify
seven (by default) diverse FEPOPS which are thought to best capture a fuzzy
representation of the molecule. These seven FEPOPS each comprise 22 descriptors
each, totaling 154 32-bit floating point numbers or 616 bytes.
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Figure 1: OpenFEPOPS descriptor generation showing the capture of tautomer and conformer information
from a single input molecule.

Descriptor generation with OpenFEPOPS is a compute intensive task and as noted in literature,
designed to be run in situations where large compound archives have had their descriptors
pre-generated and are queried against relatively small numbers of new molecules for which
descriptors are not known and are ad-hoc generated. To enable use in this manner, OpenFE-
POPS provides functionality to cache descriptors through specification of database files, either
in the SQLite or JSON formats.

Scoring and comparison of molecules based on their molecular descriptors
1. Sorting

• With seven (by default) diverse FEPOPS representing a small molecule, the FEPOPS
are sorted by ascending charge.

2. Scaling
• Due to the different scales and distributions of features comprising FEPOPS descrip-

tors, each FEPOP is centered and scaled according to observed mean and standard
deviations of the same features within a larger pool of molecules. By default, these
means and standard deviations have been derived from the DUDE (Mysinger et al.,
2012) diversity set which captures known actives and decoys for a diverse set of
therapeutic targets (See the Jupyter notebook ‘Explore_DUDE_diversity_set.ipynb’
in the source repository for further methods).

3. Scoring
• The Pearson correlation coefficient is calculated for the scaled descriptors of the

first molecule to the scaled descriptors of the second.

Literature highlights that the choice of the Pearson correlation coefficient leads to high
background scores as it is highly unlikely to see little correlation between any molecule due
to fundamental limitations of chemistry and geometry. Therefore, unrelated molecules are
likely to have FEPOPS similarity scores higher than those encountered with more traditional
techniques such as bitstring fingerprints and Tanimoto or Dice similarity measures.

The predictive performance of OpenFEPOPS was evaluated using the DUDE (Mysinger et al.,
2012) diversity set. This dataset comprises eight protein targets accompanied by decoy ligands
and known active ligands. For each target, actives were used as queries to retrieve all other
actives. Retrieval rankings were assessed using the AUROC (Area Under Receiver Operating
Characteristic) metric (Fawcett, 2006) and scores for each active averaged within targets to
assign a final average AUROC score for each target. Table 1 shows the average AUROC
scores for DUDE diversity set targets along with scores obtained using the popular Morgan
2, MACCS, and RDKit fingerprints as implemented in RDKit and scored using the Tanimoto
distance metric. See the Jupyter notebook ‘Explore_DUDE_diversity_set.ipynb’ in the source
repository for further methods and data availability using the FigShare service. All evaluated
similarity techniques perform comparably with average AUROC scores of 0.723, 0.692, 0.687,
and 0.701 for Morgan 2, MACCS, RDKit and OpenFEPOPS respectively. OpenFEPOPS
achieves comparable performance to other metrics using 3D representations of molecules across
a range of tautomer states which is in stark contrast to the approaches taken by the other
connectivity and fingerprint-based methods. Diversity in similarity techniques allows potentially
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interesting actives undiscoverable with one technique to be flagged and ranked highly by
another, offering new routes to novelty, new chemistries, and efficacious leads from early-stage
drug discovery efforts.

Target Morgan 2 MACCS RDKit OpenFEPOPS
akt1 0.836 0.741 0.833 0.831

ampc 0.784 0.673 0.660 0.639
cp3a4 0.603 0.582 0.613 0.647
cxcr4 0.697 0.854 0.592 0.899

gcr 0.670 0.666 0.708 0.616
hivpr 0.780 0.681 0.759 0.678
hivrt 0.651 0.670 0.660 0.582
kif11 0.763 0.668 0.672 0.713

Table 1: Averaged AUROC scores by target and molecular similarity technique for the DUDE
diversity set. Across all datasets, 19 small molecules out of 112,796 were excluded from analysis
mainly due to issues in parsing to valid structures using RDKit.

Availability, usage and documentation
OpenFEPOPS has been uploaded to the Python Packaging Index under the name ‘fepops’ and
as such is installable using the pip package manager and the command pip install fepops.
With the package installed, entrypoints are used to expose commonly used OpenFEPOPS tasks
such as descriptor generation and calculation on molecular similarity, enabling simple command
line access without the need to explicitly invoke a Python interpreter. Whilst OpenFEPOPS
may be used solely via the command line interface, a robust API is available and may be used
within other programs or integrated into existing pipelines to enable more complex workflows.
Extensive API documentation is available at https://justinykc.github.io/FEPOPS, along with
a concise user-guide at https://justinykc.github.io/FEPOPS/readme.html
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