
gesel: a JavaScript package for client-side gene set
enrichment
Aaron Tin Long Lun 1 and Jayaram Kancherla 1

1 Genentech Inc., South San Francisco, United States of America
DOI: 10.21105/joss.05777

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @majensen
• @bede

Submitted: 15 March 2023
Published: 24 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
gesel is a JavaScript package for performing gene set enrichment analyses within the browser.
All calculations are performed on the client device, without any no need for a dedicated backend
server. This eliminates concerns around cost, scalability, latency, and data ownership that are
associated with a backend-based architecture. We demonstrate the use of gesel with a basic
web application that performs enrichment analyses on user-supplied genes with sets derived
from the Gene Ontology and MSigDB. Developers can also use gesel to incorporate gene set
enrichment capabilities into their own applications.

Statement of need
Gene set enrichment analyses (GSEA) are commonly used to interpret the biological activity of
a user-supplied list of interesting genes (Subramanian et al., 2005). Briefly, this task involves
quantifying the enrichment of each reference gene set’s members inside the user-supplied list,
where the reference sets are derived from a variety of sources such as previous experimental
studies or de novo computational analyses. GSEA allows scientists to summarize a large list
of gene identifiers into a tangible biological concept such as “syntaxin binding” or “T cell
receptor signaling pathway”. User-supplied lists are typically derived from differential expression
analyses of transcriptome-wide assays like RNA sequencing, but any list of genes can be used,
e.g., cluster-specific marker lists from single-cell RNA sequencing studies.

Given the popularity of GSEA in transcriptomics, it is not surprising that many software
tools are already available to perform this analysis. Most existing GSEA tools operate inside
frameworks like R/Bioconductor (Korotkevich et al., 2021; Wu & Smyth, 2012; Young et al.,
2010) and require both installation of software and associated programming knowledge to use.
Web applications like Enrichr and GeneTrail (Backes et al., 2007; Chen et al., 2013) provide
more user-friendly interfaces that require minimal computational knowledge, targeted to the
majority of bench scientists. These applications use a conventional backend architecture where
the browser sends a request containing the user-supplied list of genes to a backend server; the
backend then performs the analysis and returns the results to the user’s device (i.e., the client)
for inspection.

While common, this backend-based architecture is subject to a number of concerns around
cost, scalability, latency, and data ownership. The application maintainer is responsible for
provisioning, deploying, monitoring and maintaining a backend server, which requires both
money and time. The maintainer is also responsible for scaling up the backend compute
in response to increased usage, further increasing costs in an unpredictable manner. The
user-supplied lists need to be transferred to the backend and the results need to be transferred
back to the client, introducing latency to the user experience. Finally, the fact that the user’s
inputs are accessible to the backend introduces potential issues of data ownership, e.g., for
confidential biomarker lists or signatures.

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

1

https://orcid.org/0000-0002-3564-4813
https://orcid.org/0000-0001-5855-5031
https://doi.org/10.21105/joss.05777
https://github.com/openjournals/joss-reviews/issues/5777
https://github.com/LTLA/gesel.js
https://doi.org/10.5281/zenodo.10032294
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/majensen
https://github.com/bede
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05777

Here, we present gesel (https://npmjs.com/package/gesel), a JavaScript library for gene
set enrichment analyses that operates fully inside the client. Web applications can easily
incorporate gesel via the standard npm installation process, enabling developers to create
user-friendly interfaces for GSEA in different contexts. The browser will then handle all GSEA-
related computation within these applications, eliminating the responsibility of maintaining
a backend and avoiding any transfer of user data. This obviates the problems associated
with a backend architecture and allows the application to scale naturally to any number
of user devices. We demonstrate the use of gesel by creating a simple web application
(https://ltla.github.io/gesel-app) for identifying interesting gene sets based on overlaps with
user-supplied lists.

Usage
gesel’s analysis involves testing for significant overlap between each reference gene set and
the user-supplied list of genes. While this is the simplest form of GSEA, it is fast, intuitive,
mostly effective and avoids the need for users to specify a ranking across the supplied genes.
The algorithm can also be phrased as a search for the gene sets that contain at least one entry
of the user-supplied list. To demonstrate, consider the following list of gene symbols mixed
with Ensembl and Entrez identifiers.

let user_supplied = ["SNAP25", "NEUROD6", "ENSG00000123307", "1122"];

Our first task is to map these user-supplied gene identifiers to gesel’s internal identifiers.
In this case, we are interested in human gene sets, hence the taxonomy identifier in the
searchGenes() call.

let input_mapped = await gesel.searchGenes("9606", user_supplied);

console.log(input_mapped);

// [[4639], [12767], [12577], [828]]

To simplify matters, we will ony use the first matching gesel gene identifier for each user-
supplied gene. Other applications may prefer to handle multi-mapping genes by, e.g., throwing
an error to require clarification from the user.

let input_list = [];

for (const x of input_mapped) {

if (x.length >= 1) {

input_list.push(x[0]);

}

}

console.log(input_list);

// [4639, 12767, 12577, 828]

We call findOverlappingSets() to search for all human gene sets that overlap the user-
supplied list. This returns an array of objects with the set identifier, the number of overlapping
genes, the size of each set and the enrichment p-value based on the hypergeometric distribution.
Applications can sort this array by the p-value to prioritize sets with significant overlap.

let overlaps = await gesel.findOverlappingSets("9606", input_list);

console.log(overlaps.length);

// 935

console.log(overlaps[0]);

// { id: 379, count: 1, size: 10, pvalue: 0.0009525509051785397 }

Given a set identifier, we obtain that set’s details with the fetchSingleSet() function.

let set_details = await gesel.fetchSingleSet("9606", overlaps[0].id);

console.log(set_details);

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

2

https://doi.org/10.21105/joss.05777

// {

// name: 'GO:0001504',

// description: 'neurotransmitter uptake',

// size: 10,

// collection: 0,

// number: 379

// }

The same approach can also be used to obtain the details of the collection containing that set.

let parent_collection = await gesel.fetchSingleCollection("9606", set_details.collection);

console.log(parent_collection);

// {

// title: 'Gene ontology',

// description: 'Gene sets defined from the Gene Ontology (version 2022-07-01), sourced from the Bioconductor package org.Hs.eg.db 3.16.0.',

// species: '9606',

// maintainer: 'Aaron Lun',

// source: 'https://github.com/LTLA/gesel-feedstock/blob/gene-ontology-v1.0.0/go/build.R',

// start: 0,

// size: 18933

// }

The membership of each set is obtained with the fetchGenesForSet() function. This returns
an array of gesel’s internal gene identifiers, which can be mapped to various standard identifiers
or symbols using the fetchAllGenes() function.

let set_members = await gesel.fetchGenesForSet("9606", overlaps[0].id);

console.log(set_members);

// Uint32Array(10) [

// 343, 1452, 2222,

// 4543, 4547, 4548,

// 4639, 6238, 6246,

// 14046

//]

let all_symbols = (await gesel.fetchAllGenes("9606")).get("symbol");

console.log(Array.from(set_members).map(i => all_symbols[i]));

// [

// ['ATP1A2'],

// ['SLC29A1'],

// ['SLC29A2'],

// ['SLC1A3'],

// ['SLC1A6'],

// ['SLC1A7'],

// ['SNAP25'],

// ['SYNGR3'],

// ['SLC6A5'],

// ['SLC38A1']

//]

Each set also has some associated free text in its name and description. gesel can query this
text to find sets of interest, with some basic support for the ? and * wildcards.

let hits = await gesel.searchSetText("9606", "B immunity");

let first_hit = await gesel.fetchSingleSet("9606", hits[0]);

// {

// name: 'GO:0019724',

// description: 'B cell mediated immunity',

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

3

https://doi.org/10.21105/joss.05777

// size: 4,

// collection: 0,

// number: 5715

// }

let hits2 = await gesel.searchSetText("9606", "B immun*");

let first_hit2 = await gesel.fetchSingleSet("9606", hits2[0]);

// {

// name: 'GO:0002312',

// description: 'B cell activation involved in immune response',

// size: 2,

// collection: 0,

// number: 858

// }

The output of searchSetText() can then be combined with the output of findOverlappingSets()
to implement advanced searches in downstream applications.

To demonstrate gesel’s functionality, we developed a simple web application that tests for
gene set enrichment among user-supplied genes (A. Lun & Kancherla, 2023). Given several
parameters such as a list of user-supplied genes and a free-text query, the application shows a
table containing the gene sets that satisfy the search parameters. Sets are sorted by increasing
p-value to focus on those with significant enrichment. Clicking on a row corresponding to a
particular gene set shows the identities of its genes, with emphasis applied to those in the
user-supplied list. The parameters of each search are captured by query strings, allowing users
to easily save and share searches by copying the URL from the browser’s address bar. More
adventurous users can also navigate a 2-dimensional embedding (Van der Maaten & Hinton,
2008) of gene sets, where sets with similar members are placed next to each other on the
embedding; this provides an alternative representation of the search results that encourages
exploration of related gene sets.

Implementation details
gesel supports two modes of operation - a “full client-side” mode and a more lightweight
“on-demand” mode. These differ with respect to how they obtain the database files containing
the reference gene sets. In full client-side mode, gesel will download the relevant database
files from the static file server to the client. All calls to gesel functions will then perform
queries directly on the downloaded files. In this mode, the user pays an up-front cost for the
initial download such that all subsequent calculations are fully handled within the client. This
avoids any further network activity and the associated latency. For many applications, the
up-front cost is likely to be modest - for example, the total size of the default human gene set
database is just over 9 MB - so full client-side operation is simple and practical in most cases.

In the on-demand mode, gesel will perform HTTP range requests to fetch relevant slices of
each database file. For example, findOverlappingSets() needs to obtain the mapping of each
gene to the gene sets of which it is a member. Rather than downloading the entire mapping
file, gesel will ask the server to return the range of bytes containing only the mapping for the
desired gene. This is inspired by similar strategies for querying genomics data (Kancherla et
al., 2020) and reduces the burden on the client device and network. Range requests are suited
for applications that expect only sporadic usage of gesel such that an up-front download of
the entire database cannot be justified. They are also more scalable as the number of gene
sets increases into the millions, where an up-front download may become too large to be
practical. Obviously, using this mode involves increased network activity and latency from
multiple range requests if gesel functions are frequently called. This is partially mitigated by
gesel’s transparent caching of responses in memory.

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

4

https://doi.org/10.21105/joss.05777

In both cases, we stress that gesel only requires a static file server to host the database files
and optionally to support range requests. We do not have to provision and maintain a dedicated
back-end server to handle the gesel queries, saving time and money; rather, any generic
static server can be used, including free offerings, e.g., from GitHub. The client machine
performs all of the calculations and the user receives the results immediately on completion,
enabling low-latency applications that minimize network traffic. Similarly, there is no transfer
of user-supplied gene lists to an external server, avoiding any questions over data ownership.
Most importantly, as each user brings their own compute to the application, it scales to any
number of users at no cost to us (i.e., the gesel maintainers). Indeed, we consider gesel’s
development to be a natural consequence of the “client-side compute” philosophy described in
A. T. L. Lun & Kancherla (2023).

gesel works with any database files prepared according to the contract outlined in the feedstock
repository (A. Lun, 2023). These are simple tab-separated text files containing information
about the genes, sets, collections, and the mappings between them. We store the byte ranges
for each relationship in the mapping files to enable on-demand range requests. To reduce data
transfer, we apply some standard practices like delta-encoding the sorted gene identifiers and
Gzip-compressing the byte range files. gesel’s default database incorporates public gene sets
from the Gene Ontology (Ashburner et al., 2000) and, for human and mouse, the majority of
the relevant MSigDB subcollections (Liberzon et al., 2011). However, application developers
can easily point gesel to a different database by overriding the request URL. For example,
we adapted the scripts in the feedstock repository to create a company-specific database of
custom gene sets based on biomarker lists and other signatures. This is hosted inside our
internal network for use by our in-house gesel-based applications.

Acknowledgements
Thanks to Chris Bolen, Alejandro Chibly, Brandon Kayser and Xiangnan Guan, for the scientific
questions that motivated the development of this library; Hector Corrada Bravo, for his feedback
on the uselessness of the early versions of the free-text search; and Allison Vuong and Luke
Hoberecht, for recovering ATLL’s scarf when he forgot it while thinking about the library
design during a team dinner.

References
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A.

P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L.,
Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., &
Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet, 25(1), 25–29. https://doi.org/10.1038/75556

Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y. A., ller, R., Meese,
E., & Lenhof, H. P. (2007). GeneTrail–advanced gene set enrichment analysis. Nucleic
Acids Res, 35(Web Server issue), W186–192. https://doi.org/10.1093/nar/gkm323

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., &
Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment
analysis tool. BMC Bioinformatics, 14, 128. https://doi.org/10.1186/1471-2105-14-128

Kancherla, J., Yang, Y., Chae, H., & Corrada Bravo, H. (2020). Epiviz File Server: Query,
transform and interactively explore data from indexed genomic files. Bioinformatics, 36(18),
4682–4690. https://doi.org/10.1093/bioinformatics/btaa591

Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M. N., & Sergushichev, A.
(2021). Fast gene set enrichment analysis. bioRxiv. https://doi.org/10.1101/060012

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

5

https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkm323
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1093/bioinformatics/btaa591
https://doi.org/10.1101/060012
https://doi.org/10.21105/joss.05777

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P.
(2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27 (12), 1739–1740.
https://doi.org/10.1093/bioinformatics/btr260

Lun, A. (2023). Build gene sets to feed gesel. https://github.com/LTLA/gesel-feedstock

Lun, A. T. L., & Kancherla, J. (2023). Powering single-cell analyses in the browser with
WebAssembly. Journal of Open Source Software, 8(89), 5603. https://doi.org/10.21105/
joss.05603

Lun, A., & Kancherla, J. (2023). Gesel gene set search. https://ltla.github.io/gesel-app

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005).
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A, 102(43), 15545–15550. https:
//doi.org/10.1073/pnas.0506580102

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(86), 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html

Wu, D., & Smyth, G. K. (2012). Camera: a competitive gene set test accounting for inter-gene
correlation. Nucleic Acids Res, 40(17), e133. https://doi.org/10.1093/nar/gks461

Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology
analysis for RNA-seq: accounting for selection bias. Genome Biol, 11(2), R14. https:
//doi.org/10.1186/gb-2010-11-2-r14

Lun, & Kancherla. (2023). gesel: a JavaScript package for client-side gene set enrichment. Journal of Open Source Software, 8(90), 5777.
https://doi.org/10.21105/joss.05777.

6

https://doi.org/10.1093/bioinformatics/btr260
https://github.com/LTLA/gesel-feedstock
https://doi.org/10.21105/joss.05603
https://doi.org/10.21105/joss.05603
https://ltla.github.io/gesel-app
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1093/nar/gks461
https://doi.org/10.1186/gb-2010-11-2-r14
https://doi.org/10.1186/gb-2010-11-2-r14
https://doi.org/10.21105/joss.05777

	Summary
	Statement of need
	Usage
	Implementation details
	Acknowledgements
	References

