
GridFormat: header-only C++-library for grid file I/O

Dennis Gläser 1¶, Timo Koch 2, and Bernd Flemisch 1

1 University of Stuttgart, Germany 2 University of Oslo, Norway ¶ Corresponding author
DOI: 10.21105/joss.05778

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @lukeolson
• @IgorBaratta

Submitted: 15 August 2023
Published: 16 October 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Numerical simulations play a crucial role in various research domains including mathematics,
physics, and engineering. Such simulations typically involve solving a set of model equations
that describe the physical system under investigation. To find an approximate solution to these
equations on a given domain geometry and with specific boundary conditions, the domain is
usually discretized into a grid composed of points and cells, on which discretization schemes
such as finite differences, finite volumes, or finite elements are then employed. This process
yields a discrete solution defined at specific grid positions, which, depending on the scheme, can
be interpolated over the entire domain using its basis functions. Due to the high computational
demand of such simulations, developers often implement simulation codes in performant
C++ and leverage distributed-memory parallelism through MPI, the Message Passing Interface
(Clarke et al., 1994; MPI Forum, 2023), to run them on large high-performance computing
systems.

Visualization plays a fundamental role in analyzing numerical results, and one widely-used
visualization tool in research is ParaView (Ahrens et al., 2005; ParaView, 2023), which is based
on VTK, the Visualization Toolkit (Schroeder et al., 2006; The Visualization Toolkit, 2023).
ParaView can read results from a wide range of file formats, with the VTK file formats being
among the most popular. To visualize simulation results with ParaView, researchers need to
write their data into one of the supported file formats. Users of existing simulation frameworks,
such as Dune (Bastian et al., 2008, 2021), Dumux (Flemisch et al., 2011; Koch et al., 2021),
Deal.II (Arndt et al., 2022), FEniCS (A. Logg, 2012; FEniCS, 2023) or MFEM (Anderson et
al., 2021; MFEM, 2023), can usually export their results into some standard file formats.
However, they are limited to those formats that are supported by the framework. Reusing
another framework’s I/O functionality is generally challenging, at least without runtime and
memory overhead due to data conversions, since the implementation is typically tailored to
its specific data structures. As a consequence, the work of implementing I/O into standard
file formats is currently repeated in every framework and remains inaccessible for researchers
developing new simulation frameworks or other research codes relying on I/O for visualization.

To address this issue, GridFormat aims to provide an easy-to-use and framework-agnostic API
for reading from and writing to a variety of grid file formats. By utilizing generic programming
with C++ templates and traits, GridFormat is data-structure agnostic and allows developers
to achieve full interoperability with their data structures by implementing a small number of
trait classes (see discussion below). Users of both simulation frameworks and self-written small
codes can write grid-based data into standard file formats with minimal effort and without
significant runtime or memory overhead. GridFormat comes with out-of-the-box support for
data structures of several widely-used frameworks, namely Dune, Deal.II, FenicsX, MFEM, and
CGAL (CGAL, 2023; The CGAL Project, 2023).

Gläser et al. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8(90), 5778. https://doi.org/10.
21105/joss.05778.

1

https://orcid.org/0000-0001-9646-881X
https://orcid.org/0000-0003-4776-5222
https://orcid.org/0000-0001-8188-620X
https://doi.org/10.21105/joss.05778
https://github.com/openjournals/joss-reviews/issues/5778
https://github.com/dglaeser/gridformat
https://doi.org/10.5281/zenodo.10008062
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/lukeolson
https://github.com/IgorBaratta
https://creativecommons.org/licenses/by/4.0/
https://examples.vtk.org/site/VTKFileFormats/
https://doi.org/10.21105/joss.05778
https://doi.org/10.21105/joss.05778


Statement of Need
GridFormat addresses the issue of duplicate implementation effort for I/O across different
simulation frameworks. By utilizing GridFormat as a backend for visualization file output,
framework developers can easily provide their users with access to additional file formats.
Moreover, instead of implementing support for new formats within the framework, developers
can integrate them into GridFormat, thereby making them available to all other frameworks
that use GridFormat. In addition to benefiting framework developers and users, the generic
implementation of GridFormat also serves researchers with framework-independent smaller
simulation codes.

Three key requirements govern the design of GridFormat: seamless integration, minimal runtime
and memory overhead, and support for MPI. Given that C++ is widely used in grid-based
simulation codes for performance reasons, we selected C++ as the programming language
such that GridFormat can be adopted and used natively. It is lightweight, header-only, free of
dependencies (unless opt-in features such as HDF5 output is desired), and supports CMake
(CMake, 2023) features that allow for automatic integration of GridFormat in downstream
projects.

A comparable project in Python is meshio (Schlömer, 2022), which supports reading from and
writing to a wide range of grid file formats. However, accessing it from within simulators written
in C++ would introduce an undesirable performance penalty, as well as memory overhead,
since meshio operates on an internal mesh representation that users have to convert their
data into. Dune users can employ dune-vtk (Praetorius, 2019), which supports I/O for a
number VTK-XML file formats and flavours, however, its implementation is strongly coupled
to the dune-grid interface and can therefore not be easily reused in other contexts. To the
best of our knowledge, a framework-independent solution that fulfills the above-mentioned
requirements does not exist.

Concept
Following the distinct VTK-XML file formats, GridFormat supports four different grid concepts:
ImageGrid, RectilinearGrid, StructuredGrid, and UnstructuredGrid. While the latter is
fully generic, the first three assume that the grid has a structured topology. A known structured
topology makes it obsolete to define cell geometries and grid connectivity, and formats designed
for such grids can therefore store the grid in a space-efficient manner. An overview of the
different types of grids is shown in the image below, and a more detailed discussion can be
found in the GridFormat documentation.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2)
(3,2)

(0,0)
(1,0)

(2,0)
(3,0)

(0,1)
(1,1) (2,1) (3,1)

(0,2)
(1,2)

(2,2)
(3,2)

0 7 6

8
1

3

2 5 4
Quad (0-7-1-3)

Polygon (1-6-8-4-5)

Quad (1-5-2-3)

Triangle (7-1-6)

ImageGrid RectilinearGrid StructuredGrid UnstructuredGrid

Figure 1: Overview over the grid concepts supported in GridFormat. While UnstructuredGrids are fully
general, the first three have a structured topology.

GridFormat uses a traits (or meta-function) mechanism to operate on user-given grid types,
and to identify which concept a given grid models. As a motivating example, consider the
following function template:

template<typename Grid>

void do_something_on_a_grid(const Grid& grid) {

Gläser et al. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8(90), 5778. https://doi.org/10.
21105/joss.05778.

2

https://examples.vtk.org/site/VTKFileFormats/#xml-file-formats
https://github.com/dglaeser/gridformat/blob/40596747e306fa6b899bdc5a19ae67e2308952f4/docs/pages/grid_concepts.md
https://doi.org/10.21105/joss.05778
https://doi.org/10.21105/joss.05778


for (const auto& cell : grid.cells()) {

// ...

}

}

In the function body, we iterate over all cells of the given grid by calling the cells method.
This limits the usability of this function to grid types that fulfill such an interface. One could
wrap the grid in an adapter that exposes the required interface method. However, this can
become cumbersome, especially if there are certain requirements on the cell type in the iterated
range. An alternative is to use traits, which allows writing the function generically, accepting
any instance of a grid type that the Cells trait class template is specialized for (by using
(partial) template specialization):

namespace Traits { template<typename Grid> struct Cells; }

template<typename Grid>

void do_something_on_a_grid(const Grid& grid) {

for (const auto& cell : Traits::Cells<Grid>::get(grid)) {

// ...

}

}

Instead of calling a function on grid directly, it is accessed via Cells, which can be specialized
for any type. If such specialization exists, do_something_on_a_grid is invocable with an
instance of type Grid directly, without the need for wrappers or adapters. Using C++-20
concepts, GridFormat can check at compile-time if a user grid specializes all required traits
correctly. Error messages emitted by the compiler indicate which trait specializations are
missing or incorrect. The traits mechanism makes the GridFormat library fully extensible: users
can achieve compatibility with their concrete grid type by specializing the required traits within
their code base, without having to change any code in GridFormat. Moreover, GridFormat
comes with predefined traits for Dune, FenicsX, Deal.II, MFEM and CGAL such that users of
these frameworks can directly use GridFormat without any implementation effort.

Note that each of the above-mentioned grid concepts requires the user to specialize a certain
subset of traits. For instance, to determine the connectivity of an unstructured grid, GridFormat
needs to know which points are embedded in a given grid cell. The information is not required
for writing structured grids into structured grid file formats. An overview of which traits are
required for which grid concept can be found in the GridFormat documentation.

The traits are required for writing out grids and associated data, and are not needed when using
GridFormat to read data from grid files. GridFormat provides access to the data as specified
by the file format, however, these specifications may not be sufficient in all applications.
For instance, to fully instantiate a simulator for parallel computations, information on the
grid entities shared by different processes is usually required. Since these requirements are
simulator-specific, any further processing has to be done manually by the user and for their data
structures. The recommended way to deal with this issue is to add any information required
for reinstantiation as data fields to the output. This way, it is readily available when reading
the file. For information on how to use these features, we refer to the API documentation and
the examples.

Acknowledgements
The authors would like to thank the Federal Government and the Heads of Government of the
Länder, as well as the Joint Science Conference (GWK), for their funding and support within
the framework of the NFDI4Ing consortium. Funded by the German Research Foundation
(DFG) - project number 442146713. TK acknowledges funding from the European Union’s

Gläser et al. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8(90), 5778. https://doi.org/10.
21105/joss.05778.

3

https://github.com/dglaeser/gridformat/blob/40596747e306fa6b899bdc5a19ae67e2308952f4/docs/pages/traits.md
https://dglaeser.github.io/gridformat/
https://github.com/dglaeser/gridformat/tree/main/examples
https://doi.org/10.21105/joss.05778
https://doi.org/10.21105/joss.05778


Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 801133.

A. Logg, G. N. W. et al, K.-A. Mardal. (2012). Automated solution of differential equations
by the finite element method. Springer. https://doi.org/10.1007/978-3-642-23099-8

Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An end-user tool for large-data
visualization. The Visualization Handbook. https://doi.org/10.1016/B978-012387582-2/
50038-1

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Cerveny, J., Dobrev, V.,
Dudouit, Y., Fisher, A., Kolev, Tz., Pazner, W., Stowell, M., Tomov, V., Akkerman, I.,
Dahm, J., Medina, D., & Zampini, S. (2021). MFEM: A modular finite element methods
library. Computers & Mathematics with Applications, 81, 42–74. https://doi.org/10.1016/
j.camwa.2020.06.009

Arndt, D., Bangerth, W., Feder, M., Fehling, M., Gassmöller, R., Heister, T., Heltai, L.,
Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Sticko, S., Turcksin, B., & Wells, D.
(2022). The deal.II library, version 9.4. Journal of Numerical Mathematics, 30(3), 231–246.
https://doi.org/10.1515/jnma-2022-0054

Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., Gräser, C., Grüninger,
C., Kempf, D., Klöfkorn, R., Ohlberger, M., & Sander, O. (2021). The Dune framework:
Basic concepts and recent developments. Computers & Mathematics with Applications,
81, 75–112. https://doi.org/10.1016/j.camwa.2020.06.007

Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger,
M., & Sander, O. (2008). A generic grid interface for parallel and adaptive scientific
computing. Part II: Implementation and tests in DUNE. Computing, 82(2), 121–138.
https://doi.org/10.1007/s00607-008-0004-9

CGAL. (2023). Website: https://www.cgal.org/, code repository: https://github.com/CGAL/
cgal.

Clarke, L., Glendinning, I., & Hempel, R. (1994). The MPI message passing interface standard.
In K. M. Decker & R. M. Rehmann (Eds.), Programming environments for massively
parallel distributed systems (pp. 213–218). Birkhäuser Basel. ISBN: 978-3-0348-8534-8

CMake. (2023). Website: https://cmake.org/.

FEniCS. (2023). Website: https://fenicsproject.org/, code repository: https://github.com/
FEniCS.

Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S.,
Nuske, P., Tatomir, A., Wolff, M., & Helmig, R. (2011). DuMux: DUNE for multi-{phase,
component, scale, physics, …} flow and transport in porous media. Advances in Water
Resources, 34(9), 1102–1112. https://doi.org/10.1016/j.advwatres.2011.03.007

Koch, T., Gläser, D., Weishaupt, K., & others. (2021). DuMux 3 - an open-source simulator
for solving flow and transport problems in porous media with a focus on model coupling.
Computers & Mathematics with Applications, 81, 423–443. https://doi.org/10.1016/j.
camwa.2020.02.012

MFEM. (2023). Website: https://mfem.org/, code repository: https://github.com/mfem/
mfem.

MPI Forum. (2023). Website: https://www.mpi-forum.org/docs/.

ParaView. (2023). Website: https://www.paraview.org/.

Praetorius, S. (2019). Dune-vtk. Published on the Dune GitLab server at https://gitlab.
dune-project.org/extensions/dune-vtk.

Gläser et al. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8(90), 5778. https://doi.org/10.
21105/joss.05778.

4

https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1515/jnma-2022-0054
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1007/s00607-008-0004-9
https://www.cgal.org/
https://github.com/CGAL/cgal
https://github.com/CGAL/cgal
https://cmake.org/
https://fenicsproject.org/
https://github.com/FEniCS
https://github.com/FEniCS
https://doi.org/10.1016/j.advwatres.2011.03.007
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1016/j.camwa.2020.02.012
https://mfem.org/
https://github.com/mfem/mfem
https://github.com/mfem/mfem
https://www.mpi-forum.org/docs/
https://www.paraview.org/
https://gitlab.dune-project.org/extensions/dune-vtk
https://gitlab.dune-project.org/extensions/dune-vtk
https://doi.org/10.21105/joss.05778
https://doi.org/10.21105/joss.05778


Schlömer, N. (2022). MeshIO: Input/output for many mesh formats. Published on GitHub
https://github.com/nschloe/meshio and also accessible via Software Heritage Permalink.

Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit (4th ed.). Kitware.
ISBN: 978-1-930934-19-1

The CGAL Project. (2023). CGAL user and reference manual (5.5.2 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.5.2/Manual/packages.html

The visualization toolkit. (2023). Website: https://vtk.org/.

Gläser et al. (2023). GridFormat: header-only C++-library for grid file I/O. Journal of Open Source Software, 8(90), 5778. https://doi.org/10.
21105/joss.05778.

5

https://github.com/nschloe/meshio
https://archive.softwareheritage.org/swh:1:dir:66abafedf7bb13be1456122e3e6ee440718213d3;origin=https://github.com/nschloe/meshio;visit=swh:1:snp:ac77229685cede5f3e00ab69323c0bfa68d9ddc0;anchor=swh:1:rev:0138cc8692b806b44b32d344f7961e8370121ff7
https://doc.cgal.org/5.5.2/Manual/packages.html
https://vtk.org/
https://doi.org/10.21105/joss.05778
https://doi.org/10.21105/joss.05778

	Summary
	Statement of Need
	Concept
	Acknowledgements

