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Summary

SIRUS.jl1 is an implementation of the original Stable and Interpretable RUle Sets (SIRUS)
algorithm in the Julia programming language (Bezanson et al., 2017). The SIRUS algorithm
is a fully interpretable version of random forests, that is, it reduces thousands of trees in
the forest to a much lower number of interpretable rules (e.g., 10 or 20). With our Julia
implementation, we aimed to reproduce the original C++ and R implementation in a high-level
language to verify the algorithm as well as making the code easier to read. We show that
the model performs well on classification tasks while retaining interpretability and stability.
Furthermore, we made the code available under the permissive MIT license. In turn, this allows
others to research the algorithm further or easily port it to production systems.

Statement of need
Many of the modern day machine learning models are noninterpretable models, also known
as black box models. Well-known examples of noninterpretable models are random forests
(Breiman, 2001) and neural networks. Such models are available in the Julia programming
language via, for example, LightGBM.jl (Ke et al., 2017), Flux.jl (Innes, 2018), and BetaML.jl
(Lobianco, 2021). Although these models can obtain high predictive performance and are
commonly used, they can be problematic in high stakes domains where model decisions have
real-world impact on individuals, such as suggesting treatments or selecting personnel. The
reason is that noninterpretable models may lead to unsafe, unfair, or unreliable predictions
(Barredo Arrieta et al., 2020; Doshi-Velez & Kim, 2017). Furthermore, interpretable models
may allow researchers to learn more from the model, which in turn may allow researchers to
make better model decisions and achieve a higher predictive performance.

However, the set of interpretable models is often limited to ordinary and generalized regression
models, decision trees, RuleFit, naive Bayes classification, and k-nearest neighbors (Molnar,
2022). For these models, however, predictive performance can be poor for certain tasks. Linear
models, for instance, may perform poorly when features are correlated and can be sensitive to
the choice of hyperparameters. For decision trees, predictive performance is poor compared to
random forests (James et al., 2013). RuleFit is not available in Julia and is unstable (Bénard,
Biau, Veiga, et al., 2021), meaning sensitive to small changes in data. Naive Bayes, available
in Julia as NaiveBayes.jl2, is often overlooked and can be a suitable solution, but only if the
features are independent (Ashari et al., 2013).

Researchers have attempted to make the random forest models more interpretable. Model
interpretation techniques, such as SHAP (Lundberg & Lee, 2017) or Shapley, available via

1Source code available at https://github.com/rikhuijzer/SIRUS.jl.
2Source code available at https://github.com/dfdx/NaiveBayes.jl.

Huijzer et al. (2023). SIRUS.jl: Interpretable Machine Learning via Rule Extraction. Journal of Open Source Software, 8(90), 5786. https:
//doi.org/10.21105/joss.05786.

1

https://orcid.org/0000-0001-9445-8466
https://orcid.org/0000-0002-6588-5079
https://orcid.org/0000-0002-0094-8307
https://doi.org/10.21105/joss.05786
https://github.com/openjournals/joss-reviews/issues/5786
https://github.com/rikhuijzer/SIRUS.jl
https://doi.org/10.5281/zenodo.8398350
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/sylvaticus
https://github.com/gdalle
https://creativecommons.org/licenses/by/4.0/
https://github.com/rikhuijzer/SIRUS.jl
https://github.com/dfdx/NaiveBayes.jl
https://doi.org/10.21105/joss.05786
https://doi.org/10.21105/joss.05786


Shapley.jl3, have been used to visualize the fitted model. However, the disadvantage of these
techniques are that they convert the complex model to a simplified representation. This causes
the simplified representation to be different from the complex model and may therefore hide
biases and issues related to safety and reliability (Barredo Arrieta et al., 2020).

The SIRUS algorithm solves this by simplifying the complex model and by then using the
simplified model for predictions. This ensures that the same model is used for interpretation
and prediction. However, the original SIRUS algorithm was implemented in about 10k lines of
C++ and 2k lines of R code4 which makes it hard to inspect and extend due to the combination
of two languages. Our implementation is written in about 2k lines of pure Julia code. This
allows researchers to more easily verify the algorithm and investigate further improvements.
Furthermore, the original algorithm was covered by the GPL-3 copyleft license meaning that
copies are required to be made freely available. A more permissive license makes it easier to
port the code to other languages or production systems.

Interpretability
To show that the algorithm is fully interpretable, we fit an example on the Haberman’s Survival
Dataset (Haberman, 1999). The dataset contains survival data on patients who had undergone
surgery for breast cancer and contains three features, namely the number of axillary nodes
that were detected, the age of the patient at the time of the operation, and the patient’s year
of operation. For this example, we have set the hyperparameters for the maximum number of
rules to 8 since this is a reasonable trade-off between predictive performance and interpretability.
Generally, a higher maximum number of rules will yield a higher predictive performance. We
have also set the maximum depth hyperparameter to 2. This hyperparameter means that the
random forests inside the algorithm are not allowed to have a depth higher than 2. In turn,
this means that rules contain at most 2 clauses (if A & B). When the maximum depth is set
to 1, then the rules contain at most 1 clause (if A). Most rule-based models, including SIRUS,
are restricted to depth of 1 or 2 (Bénard, Biau, Veiga, et al., 2021).

The output for the fitted model looks as follows (see Section Code Example for the code):

StableRules model with 8 rules:

if X[i, :nodes] < 7.0 then 0.238 else 0.046 +

if X[i, :nodes] < 2.0 then 0.183 else 0.055 +

if X[i, :age] ≥ 62.0 & X[i, :year] < 1959.0 then 0.0 else 0.001 +

if X[i, :year] < 1959.0 & X[i, :nodes] ≥ 2.0 then 0.0 else 0.006 +

if X[i, :nodes] ≥ 7.0 & X[i, :age] ≥ 62.0 then 0.0 else 0.008 +

if X[i, :year] < 1959.0 & X[i, :nodes] ≥ 7.0 then 0.0 else 0.003 +

if X[i, :year] ≥ 1966.0 & X[i, :age] < 42.0 then 0.0 else 0.008 +

if X[i, :nodes] ≥ 7.0 & X[i, :age] ≥ 42.0 then 0.014 else 0.045

and 2 classes: [0, 1].

This shows that the model contains 8 rules where the first rule, for example, can be interpreted
as:

If the number of detected axillary nodes is lower than 7, then take 0.238, otherwise take 0.046.

This calculation is done for all 8 rules and the score is summed to get a prediction. In essence,
the first rule says that if there are less than 8 axillary nodes detected, then the patient is more
likely to survive (class == 1). Put differently, the model states that if there are many axillary
nodes detected, then it is, unfortunately, less likely that the patient will survive. This model is
fully interpretable because the model contains a few dozen rules which can all be interpreted
in isolation and together.

3Source code available at https://gitlab.com/ExpandingMan/Shapley.jl.
4Source code available at https://gitlab.com/drti/sirus.
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Stability
Another problem that the SIRUS algorithm addresses is that of model stability. A stable
model is defined as a model which leads to similar conclusions for small changes to data (Yu,
2020). Unstable models can be difficult to apply in practice as they might require processes
to constantly change. This also makes such models appear less trustworthy. Put differently,
an unstable model by definition leads to different conclusions for small changes to the data
and, hence, small changes to the data could cause a sudden drop in predictive performance.
One model which suffers from a low stability is a decision tree, available via DecisionTree.jl
(Sadeghi et al., 2022), because it will first create the root node of the tree, so a small change
in the data can cause the root, and therefore the rest, of the tree to be completely different
(Molnar, 2022). Similarly, linear models can be highly sensitive to correlated data and, in the
case of regularized linear models, the choice of hyperparameters. The aforementioned RuleFit
algorithm also suffers from stability issues due to the unstable combination of tree fitting and
rule extraction (Bénard, Biau, Veiga, et al., 2021). The SIRUS algorithm solves this problem
by stabilizing the trees inside the forest, and the original authors have proven the correctness
of this stabilization mathematically (Bénard, Biau, Veiga, et al., 2021). In the rest of this
paper, we will compare the predictive performance of SIRUS.jl to the performance of decision
trees (Sadeghi et al., 2022), linear models, XGBoost (Chen & Guestrin, 2016), and the original
(C++/R) SIRUS implementation (Bénard, Biau, Veiga, et al., 2021). The interpretability and
stability are summarized in Table 1.

Decision Tree Linear Model XGBoost SIRUS
Interpretability High High Medium High
Stability Low Medium High High

Table 1: Summary of interpretability and stability for various models.

Predictive Performance
The SIRUS model is based on random forests and therefore well suited for settings where
the number of variables is comparatively large to the number of datapoints (Biau & Scornet,
2016). To make the random forests interpretable, the large number of trees are converted
to a small number of rules. The conversion works by converting each tree to a set of rules
and then pruning the rules by removing simple duplicates and linearly dependent duplicates,
see the SIRUS.jl documentation or the original paper (Bénard, Biau, Da Veiga, et al., 2021)
for details. In practice, this trade-off between between model complexity and interpretability
comes at a small performance cost.

To show the performance, we compared SIRUS to a decision tree, linear model, XGBoost, and
the original (C++/R) SIRUS algorithm; similar to Table 1. We have used Julia version 1.9.3
with SIRUS version 1.3.3 (at commit 5c87eda), 10-fold cross-validation, and we will present
variability as 1.96 ∗ standard error for all evaluations with respectively the following datasets,
outcome variable type, and measures: Haberman’s Survival Dataset (Haberman, 1999) binary
classification dataset with AUC, Titanic (Eaton & Haas, 1995) binary classification dataset
with Area Under the Curve (AUC), Breast Cancer Wisconsin (Wolberg & Street, 1995) binary
classification dataset with AUC, Pima Indians Diabetes (Smith et al., 1988) binary classification
dataset with AUC, Iris (Fisher, 1936) multiclass classification dataset with accuracy, and Boston
Housing (Harrison & Rubinfeld, 1978) regression dataset with R2; see Table 2. For full details,
see test/mlj.jl. The performance scores were taken from the SIRUS.jl test job that ran
following commit 5c873da using GitHub Actions. The result for the Iris dataset for the original
SIRUS algorithm is missing because the original algorithm has not implemented multiclass
classification.

At the time of writing, SIRUS’s predictive performance is comparable to the linear model and
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Dataset Decision Linear XGBoost XGBoost Original SIRUS.jl
Tree Model SIRUS

max depth: ∞ max depth: 2 max depth: 2 max depth: 2
max rules: 10 max rules: 10

Haberman 0.54 ± 0.06 0.69 ± 0.06 0.65 ± 0.04 0.63 ± 0.04 0.66 ±0.05 0.67 ± 0.06
Titanic 0.76 ± 0.05 0.84 ± 0.02 0.86 ± 0.03 0.87 ± 0.03 0.81 ±0.02 0.83 ± 0.02
Cancer 0.92 ± 0.03 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.96 ±0.02 0.98 ± 0.01
Diabetes 0.67 ± 0.05 0.70 ± 0.06 0.80 ± 0.04 0.82 ± 0.03 0.80 ±0.02 0.75 ± 0.05
Iris 0.95 ± 0.03 0.97 ± 0.03 0.94 ± 0.04 0.93 ± 0.04 0.77 ± 0.08
Boston 0.74 ± 0.11 0.70 ± 0.05 0.87 ± 0.05 0.86 ± 0.05 0.63 ±0.07 0.61 ± 0.09

Table 2: Predictive performance estimates.

XGBoost on the binary classification datasets, that is, Haberman, Titanic, Breast Cancer, and
Diabetes. The best performance occurs at the Diabetes dataset where both XGBoost and
the SIRUS models outperform the linear model. The reason for this could be that negative
effects are often nonlinear for fragile systems (Taleb, 2020). For example, it could be that an
increase in oral glucose tolerance increases the chance of diabetes exponentially. In such cases,
the hard cutoff points chosen by tree-based models, such as XGBoost and SIRUS, may fit the
data better.

For the multiclass Iris classification and the Boston Housing regression datasets, the performance
was worse than the other non-SIRUS models. It could be that this is caused by a bug in the
implementation or because this is a fundamental issue in the algorithm. Further work is needed
to find the root cause or workarounds for these low scores. One possible solution would be
to add SymbolicRegression.jl (Cranmer, 2023) as a secondary back end for regression tasks.
Similar to SIRUS.jl, SymbolicRegression.jl can fit expressions of a pre-defined form to data
albeit with more free parameters, which might fit better but also might cause overfitting,
depending on the data. This achieves performance that is similar to XGBoost (Hanson, 2023).

In conclusion, interpretability and stability are often required in high-stakes decision making
contexts such as personnel or treatment selection. In such contexts and when the task is
classification, SIRUS.jl obtains a reasonable predictive performance, while retaining model
stability and interpretability.

Code Example
The model can be used via the Machine Learning Julia (MLJ) (Blaom et al., 2020) interface.
The following code, for example, was used to obtain the fitted model for the Haberman example
at the start of this paper, and is also available in the SIRUS.jl docs5.

We first load the dependencies:

using CategoricalArrays: categorical

using CSV: CSV

using DataDeps: DataDeps, DataDep, @datadep_str

using DataFrames

using MLJ

using StableRNGs: StableRNG

using SIRUS: StableRulesClassifier

And specify the Haberman dataset via DataDeps.jl, which allows data verification via the
checksum and enables caching:

5https://sirus.jl.huijzer.xyz/dev/basic-example/
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function register_haberman()

name = "Haberman"

message = "Haberman's Survival Data Set"

remote_path = "https://github.com/rikhuijzer/haberman-survival-dataset/

releases/download/v1.0.0/haberman.csv"

checksum = "a7e9aeb249e11ac17c2b8ea4fdafd5c9392219d27cb819ffaeb8a869eb727a0f"

DataDeps.register(DataDep(name, message, remote_path, checksum))

end

Next, we load the data into a DataFrame:

function load_haberman()::DataFrame

register_haberman()

path = joinpath(datadep"Haberman", "haberman.csv")

df = CSV.read(path, DataFrame)

df[!, :survival] = categorical(df.survival)

return df

end

We split the data into features (X) and outcomes (y):

data = load_haberman()

X = select(data, Not(:survival))

y = data.survival

We define the model that we want to use with some reasonable hyperparameters for this small
dataset:

model = StableRulesClassifier(; rng=StableRNG(1), q=4, max_depth=2, max_rules=8)

Finally, we fit the model to the data via MLJ and show the fitted model:

mach = let

mach = machine(model, X, y)

MLJ.fit!(mach)

end

mach.fitresult

Resulting in the fitresult that was presented at the start of this paper.
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