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Summary
When electromagnetic fields are impinging on objects of various kinds, determining the scattered
field as a solution to Maxwell’s equations is crucial for many applications. For example, when
monitoring the position of an airplane by a radar, the scattering behavior of the airplane plays a
pivotal role and, thus, needs to be studied. Analytical approaches, however, to characterize such
scattering behavior are rarely known. Some of the few exceptions where at least semi-analytical
descriptions are available are metallic or dielectric spherical objects excited by time-harmonic
or static fields (Jin, 2015; Ruck et al., 1970). In some applications, these canonical scattering
problems are the study subject of interest. In other areas, solutions to the scattering from
spherical objects rather serve as a means to verify the correctness of more involved numerical
techniques, which allow to analyze the scattering from real-world objects, for instance, via
finite element or integral equation methods (Adrian et al., 2021; Harrington, 1993; Jin, 2015;
Rao et al., 1982). Hence, semi-analytical descriptions for the scattering from spherical objects
facilitate a reproducible and comparable verification of approaches to solve electromagnetic
scattering problems.

Statement of need
SphericalScattering is a Julia package (Bezanson et al., 2017) providing semi-analytical
solutions to the scattering of time-harmonic as well as static electromagnetic fields from
spherical objects (including the Mie solutions for plane wave excitations). To this end, series
expansions are evaluated with special care to obtain accurate solutions down to the static limit.
The series expansions are based on expressing the incident and scattered fields in terms of
spherical wave functions such that the boundary conditions can be enforced at interfaces of
different materials yielding the expansion coefficients of the spherical wave functions of the
scattered field (Jin, 2015; Ruck et al., 1970).

Other available implementations have a different focus, that is, specific 2D scenarios are
addressed (Blankrot & Heitzinger, 2018), T-matrices are employed for general shaped objects
(Egel et al., 2017-09; Art Gower & Deakin, 2018; Parker, 2022; Schebarchov et al., 2021),
ensemble averaged waves are obtained (Artur Gower, 2020), spontaneous decay rates of a
dipole are studied (Rasskazov et al., 2020), light scattering is considered employing only plane
waves as excitations (chillin-capybara, 2022; Ladutenko et al., 2017; Leinonen, 2016; Prahl,
2023; Schäfer, 2023; Walter, 2023; Wu, 2023), or only far-field quantities are computed.

In contrast, in SphericalScattering a variety of excitations is available, that is,

• plane waves,
• fields of electric/magnetic ring currents,
• fields of electric/magnetic dipoles,
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• transverse electric (TE) and transverse magnetic (TM) spherical vector waves, and
• uniform static electric fields,

where several parameters including the orientation, direction, or polarization of the sources can
be set by the user and are not predefined. The scattered far- and near-fields are then obtained
following (Hansen, 1988; Jackson, 1999; Jin, 2015; Jones, 1995; Ruck et al., 1970; Sihvola &
Lindell, 1988) for

• perfectly electrically conducting (PEC) spheres and
• dielectric spheres

all via a unified interface. In consequence, SphericalScattering is a useful (code-) verification
tool in the area of electromagnetic scattering for a wide range of scenarios. For this purpose,
it has already been employed in scientific publications (Hofmann et al., 2022a, 2023a, 2021,
2022b, 2023b, 2023c, 2023d).
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