
FeenoX: a cloud-first finite-element(ish) computational
engineering tool
Jeremy Theler 1,2

1 Seamplex, Argentina 2 Instituto Balseiro, Argentina
DOI: 10.21105/joss.05846

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @vijaysm
• @AnjaliSandip
• @chennachaos

Submitted: 27 July 2023
Published: 16 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
FeenoX is a cloud-first free no-X uniX-like finite-element(ish) computational engineering tool
designed to solve engineering-related problems using cloud servers in parallel in such a way
that the problem is defined in a plain-text near-English self descriptive input file read at
run time, without requiring further user intervention after the invocation. FeenoX meets
fictitious-yet-plausible Software Requirement Specifications (SRS). The FeenoX Software
Design Specifications address each requirement of the SRS. FeenoX provides a set of common
extents, capabilities and usefulness but offers different features (following slightly different
spirits) for industry engineers, Unix hackers and academic researchers. The main features of
this design basis are

• The tool has to be an already-compiled program (not a library) so regular users do not
have to compile anything to solve a problem.

• Simple problems ought to need simple input files.
• There should be a one-to-one correspondence between the problem definition and

FeenoX’s input file, as illustrated in fig. 1.
• There should be an extension mechanism to allow hackers and researchers to add new

partial differential equations to the tool.

Figure 1: The NAFEMS LE10 problem statement (Finite Element Methods & Standards (Great Britain),
1990) and the corresponding FeenoX input illustrating the one-to-one correspondence between the two.

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

1

https://orcid.org/0000-0002-4142-4980
https://doi.org/10.21105/joss.05846
https://github.com/openjournals/joss-reviews/issues/5846
https://github.com/seamplex/feenox/
https://doi.org/10.5281/zenodo.10819606
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/vijaysm
https://github.com/AnjaliSandip
https://github.com/chennachaos
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05846

Statement of need
Open-source finite-element tools are either

a. libraries which need code to use them such as
• Sparselizard (Halbach, 2017)
• MoFEM (Kaczmarczyk et al., 2020)
• FEniCS (Baratta et al., 2023)
• MFEM (Anderson et al., 2021)

b. end-user programs which need a GUI such as
• CalculiX
• CodeAster

FeenoX sits in the middle. First, it can solve

• Basic mathematics
• Systems of ODEs/DAEs
• Laplace’s equation
• Heat conduction
• Linear elasticity
• Modal analysis
• Neutron diffusion
• Neutron discrete ordinates

Second, it is the only free and open-source tool that satisfies the Software Requirement
Specifications, including that…

• in order to solve a problem one needs to prepare a (relatively) simple input file (not a
script nor a deck) which is read at run-time (not code which calls a library). For example,
considering the NAFEMS LE10 Benchmark problem from fig. 1, FeenoX works as two
“glue layers” (Raymond, 2003)

1. between the mesher Gmsh (Geuzaine & Remacle, 2009) and the PETSc library
(Balay et al., 1997, 2023)

2. between the PETSc library and a post-processor such as Paraview (Ayachit, 2015)

nafems-le10.geo Gmsh nafems-le10.msh

nafems-le10.fee nafems-le10.vtk

stdout

Paraview

FeenoX

PETSc

• these input files can expand generic command-line options using Bash syntax as $1, $2,
etc., which allow parametric or optimization loops driven by higher-level scripts.

• for solving partial differential equations (PDEs), the input file has to refer to at least
one Gmsh .msh file that defines the domain where the PDE is solved.

• the material properties and boundary conditions are defined using physical groups and
not individual nodes nor elements, so the input file is independent of the mesh and thus
can be tracked with Git to increase traceability and repeatability.

• it follows the Unix philosophy (Raymond, 2003) which, among others, separates policy
from mechanism rendering FeenoX as a natural choice for web-based interfaces like
CAEplex (fig. 2).

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

2

http://sparselizard.org/
http://mofem.eng.gla.ac.uk/mofem/html/
https://fenicsproject.org/
https://mfem.org/
http://www.calculix.de/
https://code-aster.org
https://www.seamplex.com/feenox/examples/basic.html
https://www.seamplex.com/feenox/examples/daes.html
https://www.seamplex.com/feenox/examples/laplace.html
https://www.seamplex.com/feenox/examples/thermal.html
https://www.seamplex.com/feenox/examples/mechanical.html
https://www.seamplex.com/feenox/examples/modal.html
https://www.seamplex.com/feenox/examples/neutron_diffusion.html
https://www.seamplex.com/feenox/examples/neutron_sn.html
https://www.seamplex.com/feenox/doc/srs.html
https://www.seamplex.com/feenox/doc/srs.html
https://www.seamplex.com/feenox/examples/mechanical.html#nafems-le10-thick-plate-pressure-benchmark
http://gmsh.info/
https://petsc.org/release/
https://www.paraview.org/
https://www.caeplex.com
https://doi.org/10.21105/joss.05846

Figure 2: CAEplex is a web-based interface to solve thermo-mechanical problems in the cloud that uses
FeenoX as the back end.

FeenoX tries to achieve its goals by…

• standing on both ethical (since it is free) and technical (since it is open source) grounds
while interacting with other free and open operating systems, libraries, compilers and
pre and post-processing tools, thus encouraging science and engineering to shift from
privative environments into the free world.

• leveraging the Unix programming philosophy to come up with a cloud-first tool suitable
to be automatically deployed and serve as the back end of web-based interfaces such as
CAEplex.

• providing a ready-to-run program that reads an input file at run time (and not a library
that has to be linked for each particular problem to be solved) as a deliberate design
decision discussed in the Software Design Specifications.

• designing and implementing an extensibility mechanism to allow hackers and/or academics
to add new PDE formulations by adding a new subdirectory to src/pdes in the repository
and then

a. re-bootstrapping with autogen.sh,
b. re-configuring with configure, and
c. re-compiling with make

In effect, FeenoX provides a general mathematical framework to solve PDEs with a bunch of
entry points (as C functions) where new types of PDEs (e.g. electromagnetism, fluid mechanics,
etc.) can be added to the set of what FeenoX can solve. This general framework provides
means to

• parse the input file, handle command-line arguments, read mesh files, assign variables,
evaluate conditionals, write results, etc.

PROBLEM laplace 2D

READ_MESH square-$1.msh

[...]

WRITE_RESULTS FORMAT vtk

• handle material properties given as algebraic expressions involving pointwise-defined
functions of space, temperature, time, etc.

MATERIAL steel E=210e3*(1-1e-3*(T(x,y,z)-20)) nu=0.3

MATERIAL aluminum E=69e3 nu=7/25

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

3

https://www.caeplex.com
https://www.seamplex.com/feenox/doc/sds.html
https://www.seamplex.com/feenox/doc/sds.html#sec:nouns_verbs
https://www.seamplex.com/feenox/doc/sds.html#sec:run-time-arguments
https://www.seamplex.com/feenox/doc/feenox-manual.html#read_mesh
https://www.seamplex.com/feenox/doc/feenox-manual.html#description
https://www.seamplex.com/feenox/doc/feenox-manual.html#if
https://www.seamplex.com/feenox/doc/sds.html#sec:output
https://www.seamplex.com/feenox/doc/sds.html#sec:flexibility
https://www.seamplex.com/feenox/doc/sds.html#sec:expression
https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#sec:mms
https://www.seamplex.com/feenox/examples/mechanical.html#temperature-dependent-material-properties
https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#from-a-steady-state
https://doi.org/10.21105/joss.05846

• read problem-specific boundary conditions as algebraic expressions

sigma = 5.670374419e-8 # W m^2 / K^4 as in wikipedia

e = 0.98 # non-dimensional

T0 = 1000 # K

Tinf = 300 # K

BC left T=T0

BC right q=sigma*e*(Tinf^4-T(x,y,z)^4)

• access shape functions and its derivatives evaluated either at Gauss points or at arbitrary
locations for computing elementary contributions to

– stiffness matrix
– mass matrix
– right-hand side vector

For example, this snippet would build the elemental stiffness matrix for the Laplace
problem:

int build_laplace_Ki(element_t *e, unsigned int q) {

double wdet = feenox_fem_compute_w_det_at_gauss(e, q);

gsl_matrix *B = feenox_fem_compute_B_at_gauss(e, q);

feenox_call(feenox_blas_BtB_accum(B, wdet, feenox.fem.Ki));

return FEENOX_OK;

}

The calls for computing the weights and the matrices with the shape functions and/or
their derivatives currently support first and second-order iso-geometric elements, but
other element types can be added as well. More complex cases involving non-uniform
material properties, volumetric sources, etc. can be found in the examples, tutorials and
tests.

• solve the discretized equations using the appropriate PETSc (Balay et al., 1997, 2023)
or SLEPc (Hernandez et al., 2005; Roman et al., 2023) objects, i.e.

– KSP for linear static problems
– SNES for non-linear static problems
– TS for transient problems
– EPS for eigenvalue problems

The particular functions that implement each problem type are located in subdirectories
src/pdes, namely

• laplace

• thermal

• mechanical

• modal

• neutron_diffusion

• neutron_sn

Researchers with both knowledge of mathematical theory of finite elements and programming
skills might, with the aid of the community, add support for other PDEs. They might do that
by using one of these directories (say laplace) as a template and

1. replace every occurrence of laplace in symbol names with the name of the new PDE
2. modify the initialization functions in init.c and set

• the names of the unknowns
• the names of the material properties
• the mathematical type and characteristics of problem
• etc.

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

4

https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#temperature-dependent-heat-flux-radiation
https://github.com/seamplex/feenox/blob/main/src/pdes/laplace/bulk.c#L33
https://github.com/seamplex/feenox/blob/main/src/pdes/modal/bulk.c#L98
https://github.com/seamplex/feenox/blob/main/src/pdes/thermal/bulk.c#L41
https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://www.seamplex.com/feenox/examples/
https://www.seamplex.com/feenox/doc/tutorials/
https://github.com/seamplex/feenox/tree/main/tests
https://slepc.upv.es/
https://petsc.org/release/manual/ksp/
https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#linear-steady-state-problems
https://petsc.org/release/manual/snes/
https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#non-linear-state-state-problems
https://petsc.org/release/manual/ts/
https://www.seamplex.com/feenox/doc/tutorials/320-thermal/#sec:transient
https://slepc.upv.es/documentation/current/docs/manualpages/EPS/index.html
https://www.seamplex.com/feenox/examples/neutron_diffusion.html#iaea-3d-pwr-benchmark
https://github.com/seamplex/feenox/tree/main/src/pdes
https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://github.com/seamplex/feenox/tree/main/src/pdes/thermal
https://github.com/seamplex/feenox/tree/main/src/pdes/mechanical
https://github.com/seamplex/feenox/tree/main/src/pdes/modal
https://github.com/seamplex/feenox/tree/main/src/pdes/neutron_difussion
https://github.com/seamplex/feenox/tree/main/src/pdes/neutron_sn
https://github.com/seamplex/feenox/discussions
https://github.com/seamplex/feenox/tree/main/src/pdes/laplace
https://doi.org/10.21105/joss.05846

3. modify the contents of the elemental matrices in bulk.c in the FEM formulation of the
problem being added

4. modify the contents of how the boundary conditions are parsed and set in bc.c

5. re-run autogen.sh, ./configure and make to get a FeenoX executable with support for
the new PDE.

The addition of non-trivial PDEs is not straightforward, but possible. The programming guide
contains further details about how to contribute to the code base.

Conclusions
FeenoX’s main goal is to keep things simple as possible from the user’s point of view without
sacrificing flexibility. There exist other tools which are similar in functionality but differ in
the way the problem is set up. For example, FeniCSx uses the Unified Form Language where
the PDE being solved has to be written by the user in weak form (Alnæs et al., 2014). This
approach is very flexible, but even simple problems end up with non-trivial input files so it
does not fulfill the first requirement stated in the summary. As simple as it is, FeenoX is still
pretty flexible. A proof of this fact is that its applications range from coupling neutronics
with CFD in nuclear reactors (Vasconcelos et al., 2018) to providing a back end to web-based
thermo-mechanical solvers.

References
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., & Wells, G. N. (2014). Unified form

language: A domain-specific language for weak formulations of partial differential equations.
ACM Trans. Math. Softw., 40(2). https://doi.org/10.1145/2566630

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Cerveny, J., Dobrev, V.,
Dudouit, Y., Fisher, A., Kolev, Tz., Pazner, W., Stowell, M., Tomov, V., Akkerman, I.,
Dahm, J., Medina, D., & Zampini, S. (2021). MFEM: A modular finite element methods
library. Computers & Mathematics with Applications, 81, 42—74. https://doi.org/10.
1016/j.camwa.2020.06.009

Ayachit, U. (2015). The ParaView guide: A parallel visualization application. Kitware.
ISBN: 9781930934306

Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K.,
Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.
D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., … Zhang,
J. (2023). PETSc/TAO users manual (ANL-21/39 - Revision 3.19). Argonne National
Laboratory. https://doi.org/10.2172/1968587

Balay, S., Gropp, W. D., McInnes, L. C., & Smith, B. F. (1997). Efficient management of
parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, &
H. P. Langtangen (Eds.), Modern software tools in scientific computing (pp. 163–202).
Birkhäuser Press. https://doi.org/10.1007/978-1-4612-1986-6_8

Baratta, I. A., Dean, J. P., Dokken, J. S., Habera, M., Hale, J. S., Richardson, C. N., Rognes,
M. E., Scroggs, M. W., Sime, N., & Wells, G. N. (2023). DOLFINx: The next generation
FEniCS problem solving environment. preprint. https://doi.org/10.5281/zenodo.10447666

Finite Element Methods & Standards (Great Britain), N. A. for. (1990). NAFEMS: The
standard NAFEMS benchmarks. NAFEMS. https://books.google.com.ar/books?id=
--qwHAAACAAJ

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. International Journal for Numerical

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

5

https://www.seamplex.com/feenox/doc/programming.html
https://www.caeplex.com
https://www.caeplex.com
https://doi.org/10.1145/2566630
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.2172/1968587
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.5281/zenodo.10447666
https://books.google.com.ar/books?id=--qwHAAACAAJ
https://books.google.com.ar/books?id=--qwHAAACAAJ
https://doi.org/10.21105/joss.05846

Methods in Engineering, 79(11), 1309—1331. https://doi.org/10.1016/j.camwa.2020.06.
009

Halbach, A. (2017). Sparselizard—the user friendly finite element C++ library [PhD thesis].
Université de Liège—Dép. d’électric., électron. et informat. (Inst.Montefiore).

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Trans. Math. Software, 31(3), 351–362.
https://doi.org/10.1145/1089014.1089019

Kaczmarczyk, Ł., Ullah, Z., Lewandowski, K., Meng, X., Zhou, X.-Y., Athanasiadis, I., Nguyen,
H., Chalons-Mouriesse, C.-A., Richardson, E., Miur, E., Shvarts, A., Wakeni, M., & Pearce,
C. (2020). MoFEM: An open source, parallel finite element library. The Journal of Open
Source Software. https://doi.org/10.21105/joss.01441

Raymond, E. S. (2003). The art of UNIX programming. Addison-Wesley.

Roman, J. E., Campos, C., Dalcin, L., Romero, E., & Tomas, A. (2023). SLEPc users manual
(DSIC-II/24/02 - Revision 3.19). D. Sistemes Informàtics i Computació, Universitat
Politècnica de València.

Vasconcelos, V., Santos, A., Campolina, D., Theler, G., & Pereira, C. (2018). Coupled
unstructured fine-mesh neutronics and thermal-hydraulics methodology using open software:
A proof-of-concept. Annals of Nuclear Energy, 115, 173–185. https://doi.org/10.1016/j.
anucene.2018.01.021

Theler. (2024). FeenoX: a cloud-first finite-element(ish) computational engineering tool. Journal of Open Source Software, 9(95), 5846.
https://doi.org/10.21105/joss.05846.

6

https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.21105/joss.01441
https://doi.org/10.1016/j.anucene.2018.01.021
https://doi.org/10.1016/j.anucene.2018.01.021
https://doi.org/10.21105/joss.05846

	Summary
	Statement of need
	Conclusions
	References

