
PhysioLabXR: A Python Platform for Real-Time,
Multi-modal, Brain–Computer Interfaces and
Extended Reality Experiments

Ziheng ‘Leo’ Li 1*¶, Haowen ‘John’ Wei 1*, Ziwen Xie 1, Yunxiang
Peng 1, June Pyo Suh 1, Steven Feiner 1, and Paul Sajda 1

1 Columbia University, New York, New York, United States of America ¶ Corresponding author * These
authors contributed equally.

DOI: 10.21105/joss.05854

Software
• Review
• Repository
• Archive

Editor: Marcel Stimberg
Reviewers:

• @lucask07
• @nastaran62

Submitted: 09 September 2023
Published: 11 January 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary

Figure 1: PhysioLabXR includes various visualization methods, digital signal processing modules, support
for recording and replaying experiments, and a scripting interface to deploy custom pipelines.

PhysioLabXR is a Python-based open-source software platform for developing experiments for
neuroscience and human–computer interaction (HCI) that involve real-time and multi-modal
physiological data processing and interactive interfaces. PhysioLabXR provides native support
for data sources such as electrophysiological sensors (e.g., EEG, EMG, and EOG), fNIRS, eye
trackers, cameras, microphones, and screen capture, and implements the popular data transfer
protocols Lab Streaming Layer (LSL; Kothe & Mandel, n.d.) and ZeroMQ (ZMQ; ZeroMQ,
2021). It features multi-stream visualization methods, real-time digital signal processing (DSP)
modules, support for recording and replay experiments, and a Python-based scripting interface
for creating custom pipelines.

PhysioLabXR has an architecture optimized through concurrency and parallelism to ensure
efficient performance. We provide a set of detailed tutorials covering all features and example
applications, such as a P300 speller with a Unity frontend (Unity Technologies, 2005) and a
mental arithmetic experiment interfacing with PsychoPy (Peirce, 2007). An accompanying
set of benchmarks demonstrates the ability of PhysioLabXR to handle high-throughput and
multi-stream data reliably and efficiently. Published use cases show its versatility for VR and
screen-based experiments (Koorathota, 2023; Lapborisuth et al., 2023) and sensor fusion
studies (Wei et al., 2022) 1.

1PhysioLabXR was formerly called RealityNavigation, and RNApp in older publications.

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

1

https://orcid.org/0000-0001-5187-200X
https://orcid.org/0000-0003-1856-5627
https://orcid.org/0009-0006-2304-7591
https://orcid.org/0009-0000-1824-970X
https://orcid.org/0009-0005-1211-6101
https://orcid.org/0000-0001-9978-7090
https://orcid.org/0000-0002-9738-1342
https://doi.org/10.21105/joss.05854
https://github.com/openjournals/joss-reviews/issues/5854
https://github.com/PhysioLabXR/PhysioLabXR
https://doi.org/10.5281/zenodo.10471500
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/lucask07
https://github.com/nastaran62
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05854

Statement of Need
Recent years have seen a growing interest in multi-modal experiments, often involving closed-
loop interaction systems, in neuroscience and human–computer interaction (HCI). Many
emerging paradigms have found new roots in extended reality (XR) environments, including
virtual reality (VR) and augmented reality (AR). Such experiments are increasingly fusing
multiple modalities and combining different physiological measurements. For example, one
sensor can generate events to extract meaningful data intervals from other sensors, such as
fixation-related potential (FRP) studies in which EEG epochs are locked to visual fixations
from eye trackers (Nikolaev et al., 2016). Multiple physiological signals can also be combined
to enhance their predictive power for use in applications ranging from emotion recognition (He
et al., 2020; Koelstra et al., 2011) to movement actuation via sensorimotor rhythms (Sollfrank
et al., 2016). Further, multi-modal paradigms can facilitate the exploration of how different
physiological systems interact; for example, pupil dilation can be used as a proxy for the locus
coeruleus activity as measured via functional magnetic resonance imaging (fMRI; Murphy et
al., 2014).

Despite the prevalence of these experiments, software tools for real-time physiological data
handling are surprisingly few and far between. They can be categorized into two groups:
device-specific tools and device-independent tools. Device-specific tools, which are typically
proprietary, offer data visualization and analysis (Lührs & Goebel, 2017; NIRx, n.d.; Tobii
AB, 2023) for the hardware to which they are tied. However, they often lack support for
multi-modal experiments. To address this, researchers have created custom data pipelines
aided by third-party data transfer protocols such as LSL and ZMQ (Baltrušaitis et al., 2016;
Kothe & Mandel, n.d.; MacInnes et al., 2020; Michalareas et al., 2022; Wang et al., 2023).
This approach is typically time-consuming and requires substantial effort to adapt to new
experiments. In addition, the data transfer middleware typically does not allow researchers to
visually inspect data streams in real-time. This can be a crucial feature for many experiments,
particularly those involving devices prone to failure and artifacts during operation, such as
in EEG and fNIRS. Real-time visualization allows experimenters to react promptly to sensor
failures and prevents wasting valuable participant time.

Device-independent tools, including popular platforms, such as OpenVibe (Renard et al., 2010),
MNE Scan (Esch et al., 2018), NeuroPype (Neuropype, 2023), and iMotion (iMotions, 2023),
support real-time visualization. However, they are primarily written in statically compiled
languages, limiting customization, and some are closed-source commercial products, such as
NeuroPype and iMotion. Python’s rise in popularity as a programming language (Srinath,
2017) has made it an obvious choice for developing new device-independent tools that allow
customization through rapid prototyping. However, using Python as a backbone language
for high-precision and high-throughput data necessitates significant optimization to match
the performance level of a compiled language. Octopus-sensing (Saffaryazdi et al., 2022) is
an example of a Python-based platform that supports the acquisition and visualization of
multi-modal data.

Nevertheless, there remains a gap for an all-in-one open-source platform that supports multi-
modal data visualization, and rapid prototyping for developing experiment pipelines in complex
XR environments, while addressing the optimization challenges of basing on an interpreted
language such as Python.

Benefits
PhysioLabXR is a complete all-in-one GUI application for visualizing, recording, and replaying
neuroscience and HCI experiments, and deploying end-to-end DSP & machine learning (ML)
pipelines in XR. It offers the following benefits: (1) a user-friendly graphical user interface
(GUI) for working with both physiological and behavioral data; (2) a reliable, robust, high-

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

2

https://doi.org/10.21105/joss.05854

performance backend capable of synchronizing and processing multi-modal and high-throughput
data in a scalable manner; (3) a workflow that streamlines the hitherto time-consuming and
challenging steps in experiment cycles, including visualizing, recording, and analyzing data
offline (e.g., to understand physiological phenomena) or online (e.g., to provide neurofeedback
in a brain-computer interface); (4) flexibility and ease of setup as a cross-platform solution; and
(5) an extensive developer API, which encourages users to extend the platform with custom
hardware and real-time processing scripts.

Python dominates the implementation from frontend GUI to backend servers without sacrificing
performance, thanks in part to its concurrent runtime architecture. Selected portions, such
as real-time DSP, are written in Cython (Behnel et al., 2010), a statically compiled language
with Python-like syntax, to further improve performance. Users can use PhysioLabXR as a
scaffold and leverage Python’s extensive APIs to shape the platform according to their needs.

Users can write Python scripts to interact with any data stream and communicate processed
results with built-in I/O modules. This flexibility allows users to design closed-loop systems,
including deploying ML models and sending predictions to and from PhysioLabXR.

PhysioLabXR can be used with popular stimulus-presentation software such as Unity (Unity
Technologies, 2005), PsychoPy (Peirce, 2007) and other analysis software, including MATLAB
(MathWorks Inc., 2021). For experiments already utilizing LSL and ZMQ for data transfer,
the software provides convenient network stream connectivity with these two widely-used data
middleware. As its name implies, PhysioLabXR has extensive support for XR, including headset-
based VR and AR. This builds on our previous work, where we developed an environment to
support neuroscience experiments that utilize Unity and other advanced stimulus paradigms
(Jangraw et al., 2014).

PhysioLabXR adheres to industry-standard software development guidelines, including continu-
ous integration. Its modular software architecture simplifies the learning curve for users who
wish to add custom functionality, such as support for new sensors.

PhysioLabXR: Working with Streams
All functionality in PhysioLabXR is based on Streams. A stream is a sequence of data points
that arrive in real-time, with each frame of data carrying a timestamp, whether it is from
physiological sensors, video cameras, microphones, screen capture, or software-generated data.
PhysioLabXR provides a unified interface for working with streams for visualization, recording,
replaying, and DSP. Each feature addresses different requirements in experiments involving
real-time data collection and processing. Here, we provide a brief overview of these features:

• Data stream API establishes a connection with data sources, either through native
plugins or network protocols (LSL or ZMQ).

• Visualization helps users visually inspect their data in real-time to understand their data
better.

• Recording lets users capture experimental data in real-time and export them for further
analysis.

• Replaying enables users to play back data streams from past experiments and, if needed,
test their data processing script and algorithm in real-time as if the experiment is running
live.

• DSP is another powerful feature allowing users to apply predefined signal processing
algorithms to their data streams.

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

3

https://doi.org/10.21105/joss.05854

Figure 2: Example use case of PhysioLabXR in a memory formation and retrieval experiment involving real-
time processing of pupillometry and fMRI streams. This example demonstrates the diverse visualization
options provided. In this experiment, the participant is asked to navigate a virtual shopping mall and
respond verbally during their task. (A) The 3D fMRI visualizer shows fMRI data streamed in real-time. (B)
The experimenter uses PhysioLabXR to monitor and record the scene from the participant’s first-person
view while they perform the task. (C) The participant’s speech is captured using a microphone connected
to the software that visualizes the audio data as a spectrogram. (D) Eye movement and pupillometry
data are recorded through an eye tracker outside the scanner that receives the participant’s eye image via
a mirror. The time series of the eye-tracking data are plotted in a line chart. (E) Simultaneously, an ML
model deployed through PhysioLabXR’s scripting interface predicts from the fMRI data and pupillometry
if a target memory is retrieved, with the two-class inference result visualized as a bar plot.

Scripting Interface

Figure 3: Example script setup for a fixation-related potential (FRP) experiment. The FixationDetection
script (upper right) identifies fixations from the eye-tracking stream, while the P300Detector script
(bottom right) decodes EEG data locked to detected fixations, and determines if a target object elicits
an FRP. This setup is similar to the experiment conducted by Rämä and Baccino (Rämä & Baccino,
2010). (A) Eye-tracking data is processed by the “FixationDetection” script. (B) The fixation results are
streamed through the output LSL outlet “Fixations.” (C) In the .init function of P300Detector, the P300
classifier model is loaded from the file system path in the script parameter “model_path.” (D–E) If a
fixation is detected, the model takes the EEG epoch time-locked to the fixation and makes a prediction.
A loop call is completed by writing the prediction results to the output stream “P300Detect.”

The scripting interface allows researchers to build diverse experiment paradigms. It enables
the execution of user-defined Python scripts, empowering users to create and deploy custom

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

4

https://doi.org/10.21105/joss.05854

data processing pipelines. With Python’s versatility and open-source libraries encouraging
exploration of novel applications such as closed-loop neurofeedback, users can train and
run ML models in real-time, using PyTorch (Paszke et al., 2019), scikit-learn (Pedregosa
et al., 2011), and other libraries. Users can communicate results from scripts to external
applications using built-in networking APIs, including LSL and ZMQ. The script widget offers a
straightforward way to add and run scripts, adjust attributes that influence the data processing
pipeline’s behavior, and monitor performance. These attributes include defining the streams
to use as inputs, setting input buffer duration, controlling run frequency, creating outputs to
visualize pipeline results or communicate with other programs, and utilizing exposed parameters
that allow variable adjustments during runtime. A script in PhysioLabXR consists of three
abstract methods—init, loop, and cleanup—which users can override to specify behavior.
Built-in scripts support commonly used algorithms such as fixation detection and band-power
computation and connection to popular devices such as Tobii eye trackers (Tobii AB, 2023)
and OpenBCI EEG caps (OpenBCI, n.d.).

All these features can be used in combination, enhancing the overall potential of PhysioLabXR.
For example, filters can first be applied to EEG data, and the user can visualize the filtered
stream as it drives a BCI with a custom script.

Software Design Principles
Creating an efficient runtime experience is a significant challenge for large-scale Python software
when dealing with high-throughput data, complex graphics, and frequent I/O operation from
serialization, given the interpreted nature of the language. To make this possible, PhysioLabXR
is optimized through a combination of concurrency, parallelism, and a modular software
architecture.

Figure 4: Sequence diagram showing the information exchange between PhysioLabXR’s threads and
processes. The main process contains concurrent threads of the main GUI controller, serialization, data
worker, and visualization. When the user adds a new data source, the GUI thread forks a data worker
and a visualization thread. More demanding operations run on separate server processes, including replay
and scripting. User commands such as StartStreaming, StartReplay, and StopRecording are passed from
the main GUI to the corresponding threads or processes.

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

5

https://doi.org/10.21105/joss.05854

The architecture of PhysioLabXR follows rigorous software design patterns, minimizing main-
tenance efforts while maximizing scalability. Unit testing is at the core of our development
process; each software feature, backend, and GUI frontend, is tested on both functionality and
performance. The software is built using continuous integration: each commit to the main
branch triggers a full test routine to ensure compatibility.

Limitation and Future Scope
PhysioLabXR aims to be a versatile platform for real-time experiments, primarily for, but not
limited to, HCI and neuroscience. It is designed to be a community-driven project, with our core
team of developers maintaining architectural integrity and functional correctness. At the same
time, we welcome contributions from researchers and practitioners in related fields to build
on this scaffolding and expand its capabilities. While the stream interface supports data sent
through LSL or ZMQ, we are currently developing native plugins for sensors that lack network
support. These plugins will enable the use of certain brands of fMRI, TMS (transcranial
magnetic stimulation), and invasive neuroimaging devices (e.g., Neuropixels, Interuniversity
Microelectronics Centre, 2023). We are also adding real-time analysis and processing modules
for more modalities, such as real-time source localization for EEG and speech recognition for
audio. Moreover, the current scripting interface is designed to provide maximum flexibility,
thus requiring users to write Python code for their pipelines. In coming releases, we plan to
make the scripting features more accessible to users with less programming experience by
providing a visual programming interface and code generation.

Conclusion
PhysioLabXR is a pioneering tool in the era of spatial and physiological computing, addressing
the increasing demand for a comprehensive software platform that drives multi-modal data
integration and close-loop interaction. PhysioLabXR offers an array of interconnected func-
tionalities, including visualization, recording, replay, real-time DSP modules, and a scripting
interface. These all empower researchers and practitioners to explore novel experiment para-
digms and design intricate feedback loops. With its Python-based frontend and C++-powered
backend, the framework is built with scalability in mind while having optimized performance.
The continued development of PhysioLabXR will be driven by the community and aims to
fuel research insights into the intersection between the brain, behavior, and human-computer
interaction.

Acknowledgments
This project was partly funded by the Columbia/ARL Human-Guided Intelligent Systems
(HGIS) Program (W911NF-23-2-0067), a Vannevar Bush Faculty Fellowship from the US
Department of Defense (N00014-20-1-2027) and a Center of Excellence grant from the Air
Force Office of Scientific Research (FA9550-22-1-0337). This work was also supported by
the Army Research Laboratory STRONG Program (W911NF-19-2-0135). We would like to
express our gratitude for the support from our colleagues at the Laboratory for Intelligent
Imaging and Neural Computing (LIINC), the Computer Graphics and User Interfaces (CGUI)
Lab and the Artificial Intelligence for Vision Science (AI4VS) Lab at Columbia University, and
Human-Computer Interaction (HCI) Lab at Worcester Polytechnic Institute. We would also
like to thank all the community members who have contributed to PhysioLabXR.

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

6

https://doi.org/10.21105/joss.05854

Licensing and Availability
PhysioLabXR is an open-source project distributed under the BSD 3-Clause License. Researchers
are welcome to modify the software to meet their specific needs and share their modifications
with the community. We provide the following links to help access related resources:

• Website: The official PhysioLabXR website serves as a central hub for its information
and updates. It can be accessed at https://www.physiolabxr.org.

• Documentation: The documentation includes tutorials for its features, tutorials, example
use cases, and developer guides. It is hosted at https://physiolabxrdocs.readthedocs.
io/en/latest/index.html. For testing and demonstration purposes, the documentation
links to (otherwise unpublished) example recordings performed on co-authors of this
manuscript.

• GitHub Repository: Users can access the repository at https://github.com/PhysioLabXR/
PhysioLabXR. Users can submit bug reports and feature requests through the GitHub
issue tracker.

References
Baltrušaitis, T., Robinson, P., & Morency, L.-P. (2016). Openface: An open source facial

behavior analysis toolkit. 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), 1–10. https://doi.org/10.1109/WACV.2016.7477553

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2010).
Cython: The best of both worlds. Computing in Science & Engineering, 13(2), 31–39.
https://doi.org/10.1109/MCSE.2010.118

Esch, L., Sun, L., Klüber, V., Lew, S., Baumgarten, D., Grant, P. E., Okada, Y., Haueisen, J.,
Hämäläinen, M. S., & Dinh, C. (2018). MNE scan: Software for real-time processing of
electrophysiological data. Journal of Neuroscience Methods, 303, 55–67. https://doi.org/
10.1016/j.jneumeth.2018.03.020

He, Z., Li, Z., Yang, F., Wang, L., Li, J., Zhou, C., & Pan, J. (2020). Advances in multimodal
emotion recognition based on brain–computer interfaces. Brain Sciences, 10(10), 687.
https://doi.org/10.3390/brainsci10100687

iMotions. (2023). iMotion. https://imotions.com/

Interuniversity Microelectronics Centre. (2023). Neuropixels. https://www.neuropixels.org/

Jangraw, D. C., Johri, A., Gribetz, M., & Sajda, P. (2014). NEDE: An open-source scripting
suite for developing experiments in 3D virtual environments. Journal of Neuroscience
Methods, 235, 245–251. https://doi.org/10.1016/j.jneumeth.2014.06.033

Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt,
A., & Patras, I. (2011). Deap: A database for emotion analysis; using physiological signals.
IEEE Transactions on Affective Computing, 3(1), 18–31. https://doi.org/10.1109/T-AFFC.
2011.15

Koorathota, S. C. (2023). Multimodal deep learning systems for analysis of human behavior,
preference, and state [PhD thesis]. Columbia University.

Kothe, C., & Mandel, C. (n.d.). A software framework for synchronizing a large array of data
collection and stimulation devices. https://github.com/sccn/labstreaminglayer

Lapborisuth, P., Koorathota, S., & Sajda, P. (2023). Pupil-linked arousal modulates network-
level EEG signatures of attention reorienting during immersive multitasking. Journal of
Neural Engineering. https://doi.org/10.1088/1741-2552/acf1cb

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

7

https://www.physiolabxr.org
https://physiolabxrdocs.readthedocs.io/en/latest/index.html
https://physiolabxrdocs.readthedocs.io/en/latest/index.html
https://github.com/PhysioLabXR/PhysioLabXR
https://github.com/PhysioLabXR/PhysioLabXR
https://doi.org/10.1109/WACV.2016.7477553
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.jneumeth.2018.03.020
https://doi.org/10.1016/j.jneumeth.2018.03.020
https://doi.org/10.3390/brainsci10100687
https://imotions.com/
https://www.neuropixels.org/
https://doi.org/10.1016/j.jneumeth.2014.06.033
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1109/T-AFFC.2011.15
https://github.com/sccn/labstreaminglayer
https://doi.org/10.1088/1741-2552/acf1cb
https://doi.org/10.21105/joss.05854

Lührs, M., & Goebel, R. (2017). Turbo-satori: A neurofeedback and brain–computer inter-
face toolbox for real-time functional near-infrared spectroscopy. Neurophotonics, 4(4),
041504–041504. https://doi.org/10.1117/1.NPh.4.4.041504

MacInnes, J. J., Adcock, R. A., Stocco, A., Prat, C. S., Rao, R. P., & Dickerson, K. C.
(2020). Pyneal: Open source real-time fMRI software. Frontiers in Neuroscience, 14, 900.
https://doi.org/10.3389/fnins.2020.00900

MathWorks Inc. (2021). MATLAB version: R2021b. The MathWorks Inc. https://www.
mathworks.com

Michalareas, G., Rudwan, I. M., Lehr, C., Gessini, P., Tavano, A., & Grabenhorst, M.
(2022). A scalable and robust system for audience EEG recordings. bioRxiv, 2022–2012.
https://doi.org/10.1101/2022.12.16.520764

Murphy, P. R., O’connell, R. G., O’sullivan, M., Robertson, I. H., & Balsters, J. H. (2014).
Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain
Mapping, 35(8), 4140–4154. https://doi.org/10.1002/hbm.22466

Neuropype. (2023). Neuropype. https://www.neuropype.io/

Nikolaev, A. R., Meghanathan, R. N., & Leeuwen, C. van. (2016). Combining EEG and eye
movement recording in free viewing: Pitfalls and possibilities. Brain and Cognition, 107,
55–83. https://doi.org/10.1016/j.bandc.2016.06.004

NIRx. (n.d.). https://www.nirx.net/.

OpenBCI. (n.d.). https://openbci.com/.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems,
32.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine learning
in python. The Journal of Machine Learning Research, 12, 2825–2830.

Peirce, J. W. (2007). PsychoPy—psychophysics software in python. Journal of Neuroscience
Methods, 162(1-2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017

Rämä, P., & Baccino, T. (2010). Eye fixation-related potentials (EFRPs) during object
identification. Visual Neuroscience, 27(5-6), 187–192. https://doi.org/10.1017/
S0952523810000283

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., &
Lécuyer, A. (2010). Openvibe: An open-source software platform to design, test, and
use brain–computer interfaces in real and virtual environments. Presence, 19(1), 35–53.
https://doi.org/10.1162/pres.19.1.35

Saffaryazdi, N., Gharibnavaz, A., & Billinghurst, M. (2022). Octopus sensing: A python
library for human behavior studies. Journal of Open Source Software, 7(71), 4045.
https://doi.org/10.21105/joss.04045

Sollfrank, T., Ramsay, A., Perdikis, S., Williamson, J., Murray-Smith, R., Leeb, R., Millán,
J., & Kübler, A. (2016). The effect of multimodal and enriched feedback on SMR-BCI
performance. Clinical Neurophysiology, 127 (1), 490–498. https://doi.org/10.1016/j.clinph.
2015.06.004

Srinath, K. (2017). Python–the fastest growing programming language. International Research
Journal of Engineering and Technology, 4(12), 354–357.

Tobii AB. (2023). Tobii. Tobii AB. https://www.tobii.com/

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

8

https://doi.org/10.1117/1.NPh.4.4.041504
https://doi.org/10.3389/fnins.2020.00900
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1101/2022.12.16.520764
https://doi.org/10.1002/hbm.22466
https://www.neuropype.io/
https://doi.org/10.1016/j.bandc.2016.06.004
https://www.nirx.net/
https://openbci.com/
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1017/S0952523810000283
https://doi.org/10.1017/S0952523810000283
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.21105/joss.04045
https://doi.org/10.1016/j.clinph.2015.06.004
https://doi.org/10.1016/j.clinph.2015.06.004
https://www.tobii.com/
https://doi.org/10.21105/joss.05854

Unity Technologies. (2005). Unity. https://unity.com/

Wang, Q., Zhang, Q., Sun, W., Boulay, C., Kim, K., & Barmaki, R. L. (2023). A scoping
review of the use of lab streaming layer framework in virtual and augmented reality research.
Virtual Reality, 1–16. https://doi.org/10.1007/s10055-023-00799-8

Wei, H., Li, Z., Galvan, A. D., Su, Z., Zhang, X., Pahlavan, K., & Solovey, E. T. (2022).
IndexPen: Two-finger text input with millimeter-wave radar. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(2), 1–39. https://doi.org/
10.1145/3534601

ZeroMQ. (2021). ZeroMQ - the intelligent transport layer. https://zeromq.org/

Li et al. (2024). PhysioLabXR: A Python Platform for Real-Time, Multi-modal, Brain–Computer Interfaces and Extended Reality Experiments.
Journal of Open Source Software, 9(93), 5854. https://doi.org/10.21105/joss.05854.

9

https://unity.com/
https://doi.org/10.1007/s10055-023-00799-8
https://doi.org/10.1145/3534601
https://doi.org/10.1145/3534601
https://zeromq.org/
https://doi.org/10.21105/joss.05854

	Summary
	Statement of Need
	Benefits
	PhysioLabXR: Working with Streams
	Scripting Interface
	Software Design Principles

	Limitation and Future Scope
	Conclusion
	Acknowledgments
	Licensing and Availability
	References

