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Summary

Sparse linear regression models are a powerful tool for capturing linear relationships in high
dimensional spaces. Sparse models have only a small number of nonzero parameters —even
if the number of covariates used in estimation is large—as a result they can be easier to fit
and interpret compared to dense models (Hastie et al., 2015). Regression objectives resulting
in sparse linear models such as the Lasso (Tibshirani, 2018; Zou, 2006) and Best Subset
Selection (Hocking & Leslie, 1967) have been widely used in a variety of fields. However,
many regression problems involve covariates that have a natural underlying structure, such as
group or hierarchical relationships, that can be further leveraged to obtain improved model
performance and interpretability. Such structured regression problems occur in a wide range of
fields including genomics (Chen & Wang, 2021), bioinformatics (Ma et al., 2007), medicine
(Kim et al., 2012), econometrics (Athey & Imbens, 2017), chemistry (Gu et al., 2018), and
materials science (Leong & Tan, 2019). Several generalizations of the Lasso (Friedman et al.,
2010; Simon et al., 2013; Wang & Tian, 2019; Yuan & Lin, 2006) and Best Subset Selection
(Bertsimas et al., 2016; Bertsimas & King, 2016) have been developed to effectively exploit
additional structure in linear regression. The sparse-1m Python package provides a flexible,
comprehensive, and user-friendly implementation of (structured) sparse linear regression models,
which allows researchers to easily experiment and choose the best regression model for their
specific problem.

Statement of need

The sparse-1m Python package implements a variety of sparse linear regression models based
on convex objectives (generalizations of the Lasso) and mixed integer quadratic programming
objectives (generalizations of Best Subset Selection) that support a flexible range of ways
to introduce structured sparsity. The linear models in sparse-lm are implemented to be
compatible with scikit-learn (Buitinck et al., 2013; Pedregosa et al., 2011), in order to
enable interoperability with the wide range of tools and workflows available. The regression
optimization problems in sparse-lm are implemented and solved using cvxpy (Diamond &
Boyd, 2016), which allows users to choose from a variety of well-established open-source and
proprietary solvers. In particular, for regression problems with mixed integer programming
objectives, access to state-of-the-art proprietary solvers enables solving larger problems that
would otherwise be unsolvable within reasonable time limits.

A handful of pre-existing Python libraries implement a subset of sparse linear regression
models that are also scikit-learn compatible. celer (Massias et al., 2018) and groupyr
(Richie-Halford et al., 2021) include efficient implementations of the Lasso and Group Lasso.
group-lasso (Moe, 2020) is another scikit-learn compatible implementation of the Group
Lasso. skglm (Bertrand et al., 2022) includes several implementations of sparse linear models
based on regularization using combinations of £, (p € {1/2,2/3,1,2}) norms and pseudo-
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norms. And abess (Zhu et al., 2022) includes an implementation of Best Subset Selection
and £, pseudo-norm regularization.

The aforementioned packages include highly performant versions of the specific models they
implement. However, none of these packages implement the full range of sparse linear models
available in sparse-1m, nor do they support the flexibility to modify the optimization objective
and choose among many open-source and commercially available solvers. sparse-1m satisfies
the need for a flexible and comprehensive library that enables easy experimentation and
comparisons of different sparse linear regression algorithms within a single package.

Background

g4

i

Figure 1: Schematic of a linear model with grouped covariates with hierarchical relations. Groups of
covariates are represented with different colors and hierarchical relationships are represented with arrows
(i.e. group 3 depends on group 1). The figure was inspired by Ref. (Richie-Halford et al., 2021).

Structured sparsity can be introduced into regression problems in one of two ways: convex
group regularization or mixed integer quadratic programming with linear constraints. The first
way to obtain structured sparsity is by using regularization based on generalizations of the
Lasso, such as the Group Lasso and the Sparse Group Lasso (Friedman et al., 2010; Simon
et al., 2013; Wang & Tian, 2019; Yuan & Lin, 2006). The Sparse Group Lasso regression
problem can be expressed as follows,

g = arggﬁn X8 =yl + (1= a)x > VIglllBgll2 + aX]|Bll; 1)

geG

where X is the design matrix, y is the response vector, and 3 are the regression coefficients.
g are groups of covariate indices, G is the set of all such groups being considered, and
Bg € RI&l are the covariate coefficients in group g. A € R, and « € [0, 1] are regularization
hyperparameters. The parameter e € [0, 1] controls the relative weight between the single
covariate ¢; regularization and the group regularization term. When a = 0, the regression
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problem reduces to the Group Lasso objective, and when o = 1, the problem reduces to the
Lasso objective.

The (Sparse) Group Lasso can be directly used to obtain a grouped sparsity pattern. Hierarchical
sparsity patterns can be obtained by extending the Group Lasso to allow overlapping groups,
which is referred to as the Overlap Group Lasso (Hastie et al., 2015).

The second method to obtain structured sparsity is by introducing linear constraints into
the regression objective. Introducing linear constraints is straight-forward in mixed integer
quadratic programming (MIQP) formulations of the Best Subset Selection (Bertsimas et al.,
2016; Bertsimas & King, 2016). The general MIQP formulation of Best Subset Selection with
grouped covariates and hierarchical constraints can be expressed as follows,

B* = argmin 87 (XTX + A\I) B —2y'XJ3 (2)
B

subject to 2z, € {0,1}
—Mzgl < Bg < Mzgl
ZgEG g <k
Zg <z

where z, are binary slack variables that indicate whether the covariates in each group g are
included in the model. The first set of inequality constraints ensure that coefficients ﬁg are
nonzero if and only if their corresponding slack variable z, = 1. M is a fixed parameter that
can be estimated from the data (Bertsimas et al., 2016). The second inequality constraint
introduces general sparsity by ensuring that at most k coefficients are nonzero. If G includes
only singleton groups of covariates then the MIQP formulation is equivalent to the Best Subset
Selection problem, otherwise it is a generalization that enables group-level sparsity structure.
The last inequality constraint can be used to introduce hierarchical structure into the model.
Finally, we have also included an ¢, regularization term controlled by the hyperparameter A,
which is useful when dealing with poorly conditioned design matrices.

The user-friendly implementation of statistical regression models with structured sparsity
parametrized via Group Lasso or Best Subset Selection based objectives in sparse-1m, along
with the flexibility to choose from a variety of established solvers, enables researchers to quickly
iterate, experiment and benchmark performance when choosing the best regression model for
their specific problem. sparse-1m has already been used to build linear models with structured
sparsity in a handful of material science studies (Barroso-Luque et al., 2022; Xie et al., 2023;
Zhong et al., 2022, 2023).

Usage

Since the linear regression models in sparse-1m are implemented to be compatible with
scikit-learn (Buitinck et al., 2013; Pedregosa et al., 2011), they can be used independently
or as part of a workflow—such as in a hyperparameter selection class or a pipeline— in similar
fashion to any of the available models in the sklearn.linear_model module.

Implemented regression models

The table below shows the regression models that are implemented in sparse-1lm as well as
available implementations in other Python packages. A checkmark (v') indicates that the
model selected is implemented in the package located in the corresponding column.
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Note that only sparse-1m includes adaptive versions of Lasso based estimators. However,
some of the third party packages, notably skglm and abess, include additional penalties and
regression objectives that are not implemented in sparse-1m.

Implemented model selection and composition tools

In addition to the regression models in the table above, a few model selection and composition
models are also implemented. These models are listed below:

= One standard deviation rule grid search cross-validation
= Line search cross-validation
= Stepwise composite estimator

The package can be downloaded through the Python Package Index. Documentation, including
an API reference and examples, can be found in the online documentation.
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