
lys: interactive multi-dimensional data analysis and
visualization platform
Asuka Nakamura 1

1 RIKEN Center for Emergent Matter Science, Japan
DOI: 10.21105/joss.05869

Software
• Review
• Repository
• Archive

Editor: Elizabeth DuPre
Reviewers:

• @kuadrat
• @ziatdinovmax
• @pr4deepr

Submitted: 02 September 2023
Published: 14 December 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Analyzing and visualizing scientific data is an essential part of scientific research, by which
researchers investigate complex phenomena behind it. In particular, the recent development of
an open-source scientific Python ecosystem enables us to utilize state-of-the-art analysis and
visualization. However, investigation of multi-dimensional data array still requires substantial
coding, preventing intuitive and flexible analysis/visualization. lys is a Python-based multi-
dimensional data analysis and visualization platform that provides graphical user interfaces
(GUIs) to intuitively and flexibly manipulate multi-dimensional data arrays and publication-
quality graphics. Massive multi-dimensional data over hundreds of gigabytes can be analyzed via
automatic parallel calculation behind the GUI when lys is run on high-performance computers
(HPCs). As well as the user-friendly GUIs, lys also provides flexibility for experts through its
character user interface (CUI). The hybrid GUI/CUI architecture in lys enables an intuitive,
low-code, parallel, flexible, and extensible multi-dimensional data analysis. lys is designed
as a versatile data analysis and visualization platform that can handle all analysis processes
from data loading to publication-quality figure generation. These features of lys enable us to
minimize the time required for data analysis and visualization for a broad range of users.

Statement of need
Data analysis and visualization are indispensable parts of scientific research. Understanding
experimental and simulated data deeply is essential for extracting complex phenomena be-
hind them. To this end, intuitive and fast analysis/visualization is highly required. There
are several well-known software that focus on analysis and visualization, such as IGOR Pro

(WaveMetrics Inc., 2023) (RRID:SCR_000325) and MATLAB (The MathWorks Inc., 2023)
(RRID:SCR_001622), as well as domain-specific software in respective fields. Although they
have been utilized for scientific research for a long time, recent progress in experimental/com-
putational methods has changed the situation. The data sizes obtained from experiments
and calculations have increased rapidly over the past decade, reaching more than terabytes
in many fields. As a result, the general analysis ecosystem maintained by the large scientific
open-source community has an advantage in state-of-the-art analysis compared to propri-
etary/domain-specific software. Python and its scientific libraries provide one of the most
popular analysis/visualization environments at the moment. In the scientific Python ecosystem,
flexible and fast analysis of numerical arrays has been done by several popular libraries such as
numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), dask (Rocklin, 2015) combined with
visualization tools such as matplotlib (Hunter, 2007), pyqtgraph (L. Campagnola & Moore,
2023) and Mayavi (Ramachandran & Varoquaux, 2011). Development of Jupyter Notebook

(Kluyver et al., 2016) and related libraries further enhance the capability of interactive data
analysis. However, most of these libraries require users to be familiar with low-level application
programming interfaces (APIs), which prevents intuitive analysis and visualization. In particular,
when the analyzed data is a more than 3-dimensional array, even simple interactive visualization

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

1

https://orcid.org/0000-0002-3010-9475
https://doi.org/10.21105/joss.05869
https://github.com/openjournals/joss-reviews/issues/5869
https://github.com/lys-devel/lys
https://doi.org/10.5281/zenodo.10241638
https://elizabeth-dupre.com
https://orcid.org/0000-0003-1358-196X
https://github.com/kuadrat
https://github.com/ziatdinovmax
https://github.com/pr4deepr
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05869


usually requires Python code of tens of lines. Such on-demand analysis and visualization
programs should be modified (and tested) when the data change, although a very similar
process is frequently applied to data with different dimensions. Furthermore, the code for such
an analysis should be preserved to guarantee the reproducibility of scientific results. To solve
these problems, several Python-based tools such as data-slicer (Kramer & Chang, 2021) and
napari (Chiu & Clack, 2022) have been developed. Although both of them offer sophisticated
GUIs, they are not designed as a general research platform. data-slicer focuses on quick
data inspection and visualization rather than publication-quality figure generation. napari is
mainly developed for multi-dimensional image data, and therefore visualization of other data
types such as curves, contours, vectors is limited. In such situations, a versatile Python-based
analysis and visualization platform that can handle all scientific analysis processes, from data
loading to publication-quality figure generation of a variety of data types, is highly required.

The multi-dimensional data analysis and visualization platform, lys, offers a graphical user
interface (GUI) for intuitive analysis and visualization of multi-dimensional arrays. It employs
dask as a backend, which can be used for easy parallel calculations on high-performance
clusters (HPCs). Publication-quality and fast data visualizations are provided by matplotlib

and pyqtgraph, respectively. lys is a low-code system where most analysis and visualization
processes can be done from the GUI without any knowledge of respective libraries. In particular,
a tool for interactive and fast analysis of multi-dimensional arrays has been developed. This
tool allows all analysis processes to be exported as a single file, ensuring scientific reproducibility.
In contrast to such a user-friendly GUI, lys can be easily extended because it employs a hybrid
CUI/GUI architecture. Users can edit and run their own Python code in lys to extend the
functionalities of lys.

The philosophy of lys is to serve as a versatile data analysis and visualization platform, rather
than a basic image viewer/analysis program. It was developed to minimize the time required
for data analysis and visualization for researchers. All of the processes from loading data to
generating publication-quality figures can be done in lys. In addition, these processes (including
user-defined Python code) are stored in a single directory and can be used to reproduce the
results. The rich features of lys significantly reduce the time for analysis/visualization of
multi-dimensional arrays.

Overview
lys is a hybrid GUI/CUI platform oriented towards multi-dimensional data analysis. Figure
1 shows the main features of lys. Arbitrary Python commands can be executed from an
integrated Python shell (#1). User-defined Python scripts can be edited by the internal editor
(#2) and can be executed. matplotlib graphs that contain curves, images, vector fields, and
RGB images can be displayed (#3) and edited via GUI in the sidebar (#4).

MultiCut is a central tool in lys, which enables intuitive, low-code, parallel, flexible, and
extensible analysis for multi-dimensional arrays. In the following, the data analysis and
visualization processes are explained, using three-dimensional movie data 𝐴(𝑥𝑖, 𝑦𝑗, 𝑡𝑘) as an
example (𝑖, 𝑗, 𝑘 represent indices of the array). The data analysis in MultiCut is done in four
steps. First, the original 𝑁-dimensional data 𝐴 is modified by preprocessing as 𝐴′ = 𝑃(𝐴),
where 𝑃 is an arbitrary function that translates 𝑁 dimensional data to 𝑀 dimensional data. In
the example case in Fig. 2, impulsive noise in the original data is removed using 3 × 3 × 3
median filter:

𝐴′(𝑥𝑖, 𝑦𝑗, 𝑡𝑘) = ℳ[𝐴(𝑥𝑖, 𝑦𝑗, 𝑡𝑘)],

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

2

https://doi.org/10.21105/joss.05869


Figure 1: Screenshot of lys. Users can execute arbitrary Python commands from embedded CUI (#1),
which can be extended by the user-defined scripts (#2). Matplotlib figures that contain curves, images,
vector fields, and RGB images can be displayed (#3). These figures can be edited via GUI in the sidebar
(#4).

where 𝑃 = ℳ represents median filter to remove the noise. Since the median filter does
not change the dimension of data, 𝑁 = 3 equals 𝑀 in this case. The preprocessing is used
for heavy analysis that requires whole 𝑁-dimensional data. Second, MultiCut generates an
arbitrary number of 2-dimensional images and 1-dimensional curves from 𝑀-dimensional 𝐴′

by taking a summation along arbitrary axes. In the example case in Fig. 2, an image 𝐼(𝑥𝑖, 𝑦𝑗)
and a curve 𝐶(𝑡𝑘) is generated as:

𝐼(𝑥𝑖, 𝑦𝑗) = ∑
𝑡𝑘

𝐴′(𝑥𝑖, 𝑦𝑗, 𝑡𝑘),

𝐶(𝑡𝑘) = ∑
𝑥𝑖,𝑦𝑗

𝐴′(𝑥𝑖, 𝑦𝑗, 𝑡𝑘).

The range of the summation is specified from the GUI as described later. These images and
curves are used for visualization in step 4. Third, each image and curve can be individually
modified by postprocessing. In Fig. 2, Fourier transformation along time axis ℱ𝑡 is applied to
time-dependent image intensity 𝐶(𝑡𝑘):

𝐶′(𝜔𝑙) = ℱ𝑡[𝐶(𝑡𝑘)].

Different from the preprocessing (step 1), the postprocessing function accesses only an image
or a curve. In addition, the postprocessing should be executed within a short time (< 0.1 s)
because it is repeatedly called whenever the summation range in step 2 is changed. Finally,
these analyzed data are displayed in a GUI, where users can modify the ranges of the summation
interactively. Once the summation range from step 2 is changed, the postprocess is recalculated

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

3

https://doi.org/10.21105/joss.05869


and the result is automatically updated. A four-step calculation enables flexible analysis of
multi-dimensional data. In the above example, the spectrum of the image intensity 𝐶′(𝜔𝑙)
within the user-specified image region can be interactively analyzed and displayed while the
time-consuming median filter is done only once in step 1. It should be noted that a multi-
dimensional array of arbitrary dimensions can be analyzed and visualized by MultiCut although
the given example is for a 3-dimensional case. Constructing such an interactive analysis system
is a hard task in conventional Python systems. Once the interactive analysis system is set
up using MultiCut, the settings for the analysis can be exported as a file and reused. This
guarantees the scientific reproducibility of the data analysis, which can be verified by other
scientists. In addition, all of the processes in lys are implemented using dask arrays, and
therefore all calculations can be performed in parallel when they are done on HPC systems.

Figure 2: Example for 3-dimensional time-dependent data analysis and visualization by MultiCut. The
median filter is applied to the original data (Step 1), from which several curves and images are generated
(Step 2). Each curve and image are independently processed in Step 3, and visualized in a single GUI
window (Step 4).

In addition to the features described above, lys provides some basic analysis such as data
fitting and array editor GUIs. Combining these functionalities of lys offers intuitive, low-code,
fast, and flexible analysis to users not familiar with Python while preserving the extensibility
for experts.

As compared to other analysis/visualization software, lys has several advantages. First, it
employs Python (numpy/dask) as a backend, and therefore a variety of scientific computing
libraries such as scipy can be used. This cannot be achieved by similar software such as
IGOR Pro and MATLAB. Second, lys is open-source software. Users can verify the software
and modify it if needed, which cannot be realized in proprietary software. Third, lys offers
interactive GUIs represented by MultiCut. Although there has been much effort to realize
sophisticated GUIs such as napari (Chiu & Clack, 2022) and data-slicer (Kramer & Chang,
2021), this is still very limited in the scientific Python ecosystems so far. Fourth, lys can
treat massive multi-dimensional arrays of more than hundreds of gigabytes through dask.
The coexistence of intuitive GUI and fast parallel calculation is very limited in other similar
software/libraries so far. Finally, lys is a general platform for data analysis and visualization.
All of the processes from loading data to generating publication-quality figures can be done
in lys. Although data-slicer offers similar and interactive data manipulation, it is data

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

4

https://doi.org/10.21105/joss.05869


inspection and visualization software rather than the general platform for research scientists.
While napari also offers similar functionalities for multi-dimensional images, lys is designed
to handle a variety of data types (images, curves, contours, vector fields, and RGB images) to
serve as a general-purpose platform.

Projects using the software
As lys is a general-purpose multi-dimensional data analysis system, it has been used in many
works within the last five years, particularly for our experiments and simulations. Simple
visualization functionalities are used for the analysis of movies obtained by ultrafast electron
diffraction and microscopy (Asuka Nakamura et al., 2018, 2020). A pre-release version
of MultiCut was used for analyzing the propagation of nanometric acoustic waves (Asuka
Nakamura et al., 2023) and magnetic-texture dynamics (Takahiro Shimojima et al., 2021).
Analyzing massive five-dimensional data sets obtained by five-dimensional scanning transmission
electron microscopy (A. Nakamura et al., 2022; T. Shimojima et al., 2023a; T. Shimojima
et al., 2023b) was also achieved using parallel calculations on an HPC, demonstrating the
scalability of lys. It was also used for the postprocessing of finite-element simulation results
(A. Nakamura et al., 2021).

Acknowledgements
We acknowledge contributions from Yusuke Chiashi, Jumpei Koga, Dongxue Han, and comments
from Takahiro Shimojima and Kyoko Ishizaka. This work was partially supported by a Grant-
in-Aid for Scientific Research (KAKENHI) (Grant No. 21K14488).

References
Chiu, C.-L., & Clack, N. (2022). Napari: A Python multi-dimensional image viewer platform

for the research community. Microscopy and Microanalysis, 28(S1), 1576–1577. https:
//doi.org/10.1017/S1431927622006328

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C.
(2016). Jupyter notebooks – a publishing format for reproducible computational workflows
(F. Loizides & B. Schmidt, Eds.; pp. 87–90). IOS Press.

Kramer, K., & Chang, J. (2021). Visualization of multi-dimensional data – the data-slicer
package. Journal of Open Source Software, 6(60), 2969. https://doi.org/10.21105/joss.
02969

L. Campagnola, K. Lyons, & Moore, O. (2023). PyQtGraph: Scientific graphics and GUI library
for Python. In GitHub repository. GitHub. https://github.com/pyqtgraph/pyqtgraph

Nakamura, Asuka, Shimojima, T., Chiashi, Y., Kamitani, M., Sakai, H., Ishiwata, S., Li, H., &
Ishizaka, K. (2020). Nanoscale imaging of unusual photoacoustic waves in thin flake VTe2.
Nano Letters, 20(7), 4932–4938. https://doi.org/10.1021/acs.nanolett.0c01006

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

5

https://doi.org/10.1017/S1431927622006328
https://doi.org/10.1017/S1431927622006328
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.02969
https://doi.org/10.21105/joss.02969
https://github.com/pyqtgraph/pyqtgraph
https://doi.org/10.1021/acs.nanolett.0c01006
https://doi.org/10.21105/joss.05869


Nakamura, A., Shimojima, T., & Ishizaka, K. (2021). Finite-element simulation of photoinduced
strain dynamics in silicon thin plates. Structural Dynamics, 8(2). https://doi.org/10.1063/
4.0000059

Nakamura, A., Shimojima, T., & Ishizaka, K. (2022). Visualizing optically-induced strains
by five-dimensional ultrafast electron microscopy. Faraday Discuss., 237, 27–39. https:
//doi.org/10.1039/D2FD00062H

Nakamura, Asuka, Shimojima, T., & Ishizaka, K. (2023). Characterizing an optically induced
sub-micrometer gigahertz acoustic wave in a silicon thin plate. Nano Letters, 23(7),
2490–2495. https://doi.org/10.1021/acs.nanolett.2c03938

Nakamura, Asuka, Shimojima, T., Matsuura, M., Chiashi, Y., Kamitani, M., Sakai, H.,
Ishiwata, S., Li, H., Oshiyama, A., & Ishizaka, K. (2018). Evaluation of photo-induced
shear strain in monoclinic VTe2 by ultrafast electron diffraction. Applied Physics Express,
11(9), 092601. https://doi.org/10.7567/APEX.11.092601

Ramachandran, P., & Varoquaux, G. (2011). Mayavi: 3D Visualization of Scientific Data.
Computing in Science & Engineering, 13(2), 40–51. https://doi.org/10.1109/mcse.2011.35

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task schedul-
ing. Proceedings of the 14th Python in Science Conference. https://doi.org/10.25080/
majora-7b98e3ed-013

Shimojima, T., Nakamura, A., & Ishizaka, K. (2023a). Development of five-dimensional
scanning transmission electron microscopy. Review of Scientific Instruments, 94(2). https:
//doi.org/10.1063/5.0106517

Shimojima, T., Nakamura, A., & Ishizaka, K. (2023b). Development and applications of
ultrafast transmission electron microscopy. Microscopy. https://doi.org/10.1093/jmicro/
dfad021

Shimojima, Takahiro, Nakamura, A., Yu, X., Karube, K., Taguchi, Y., Tokura, Y., & Ishizaka,
K. (2021). Nano-to-micro spatiotemporal imaging of magnetic skyrmion’s life cycle. Science
Advances, 7 (25), eabg1322. https://doi.org/10.1126/sciadv.abg1322

The MathWorks Inc. (2023). MATLAB (R2023b). The MathWorks Inc. https://www.
mathworks.com

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

WaveMetrics Inc. (2023). IGOR pro 9.05. WaveMetrics Inc. https://www.wavemetrics.com

Nakamura. (2023). lys: interactive multi-dimensional data analysis and visualization platform. Journal of Open Source Software, 8(92), 5869.
https://doi.org/10.21105/joss.05869.

6

https://doi.org/10.1063/4.0000059
https://doi.org/10.1063/4.0000059
https://doi.org/10.1039/D2FD00062H
https://doi.org/10.1039/D2FD00062H
https://doi.org/10.1021/acs.nanolett.2c03938
https://doi.org/10.7567/APEX.11.092601
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.1063/5.0106517
https://doi.org/10.1063/5.0106517
https://doi.org/10.1093/jmicro/dfad021
https://doi.org/10.1093/jmicro/dfad021
https://doi.org/10.1126/sciadv.abg1322
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1038/s41592-019-0686-2
https://www.wavemetrics.com
https://doi.org/10.21105/joss.05869

	Summary
	Statement of need
	Overview
	Projects using the software
	Acknowledgements
	References

