
Phasik: a Python package to identify system states in
partially temporal networks
Maxime Lucas 1¶, Alex Townsend-Teague2, Matteo Neri 1,3, Simone
Poetto1,4, Arthur Morris5, Bianca Habermann 6, and Laurent Tichit 7

1 CENTAI Institute, Turin, Italy 2 Dahlem Center for Complex Quantum Systems, Freie Universitat
Berlin, 14195 Berlin, Germany 3 Institut de Neurosciences de la Timone UMR 7289, Aix Marseille
Université, CNRS, Marseille 13005, France 4 Center for Modern Interdisciplinary Technologies, Nicolaus
Copernicus University, Toruń, Poland 5 Theory of Condensed Matter Group, Cavendish Laboratory,
University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom 6 Aix Marseille
University, CNRS, IBDM UMR 7288, Turing Center for Living Systems, Marseille, France 7 Aix Marseille
University, CNRS, I2M UMR 7373, Turing Center for Living Systems, Marseille, France ¶ Corresponding
author

DOI: 10.21105/joss.05872

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @GiulioRossetti
• @alexbovet

Submitted: 19 August 2023
Published: 21 November 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Phasik is a Python library for analyzing the temporal structure of temporal and partially
temporal networks. Temporal networks are used to model complex systems that consist of
entities with time-varying interactions. This library provides methods for building temporal
networks (including from data), visualizing them, and analyzing their structure. In particular,
Phasik focuses on the identification of temporal phases, that is, periods of time during which
the system is in a given state. The library supports partially temporal networks for which
information about only a subset of the edges’ temporal evolution is available. Phasik is
implemented in pure Python and integrates with the rest of the Python scientific stack.

Statement of need
Temporal networks allow to model a wide range of complex systems (Holme & Saramäki,
2012), and study both their structure (Longa et al., 2022) and dynamics (Ghosh et al., 2022;
Lucas et al., 2018). As such, temporal networks are used by scientists from different fields and
backgrounds. To help non-specialists apply temporal network theory, common and ready-to-use
computational tools are therefore crucial. For traditional static networks, several Python
libraries have had a big impact on the field. Examples include igraph (Csardi & Nepusz,
2006), NetworkX (Hagberg et al., 2008), and graph-tool (Peixoto, 2014). Temporal networks,
however, include time as an additional dimension and thus require different approaches. There
exist several Python libraries for working with temporal networks, each focusing on different
aspects of temporal networks analysis. None of these libraries, however, focuses on identifying
the temporal structure of a complex system, which is often intricately linked to the system’s
function. Systems for which the temporal structure is crucial span many scientific fields, with
example including the phases and subphases of the cell cycle (biology) (Koch & Nasmyth,
1994), the five sleep stages the brain goes through (medicine) (Loomis et al., 1937), or the
phases of social dynamics a school goes through in a day (Masuda & Holme, 2019). A popular
repository for temporal network data is SocioPatterns (Barrat et al., 2013; SocioPatterns,
2008). Very often, understanding the temporal structure of such systems is a first step towards
understanding the underlying mechanisms at play. A handful of studies have applied temporal
network theory to identify these system states from data (Gelardi et al., 2019; Masuda &
Holme, 2019; Pedreschi et al., 2020).

Lucas et al. (2023). Phasik: a Python package to identify system states in partially temporal networks. Journal of Open Source Software, 8(91),
5872. https://doi.org/10.21105/joss.05872.

1

https://orcid.org/0000-0001-8087-2981
https://orcid.org/0009-0007-0998-552X
https://orcid.org/0000-0002-2457-7504
https://orcid.org/0000-0002-8350-1446
https://doi.org/10.21105/joss.05872
https://github.com/openjournals/joss-reviews/issues/5872
https://gitlab.com/habermann_lab/phasik
https://doi.org/10.5281/zenodo.10113244
http://csoneson.github.io/
https://orcid.org/0000-0003-3833-2169
https://github.com/GiulioRossetti
https://github.com/alexbovet
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05872

Related software
There exist a few Python libraries for analyzing temporal networks, each with a different
focus. Most of them provide a base TemporalNetwork class, methods for manually adding
and removing temporal edges, and methods for calculating basic quantities such as degree,
snapshots of the temporal network at a given time, or neighbors. Teneto (Thompson et
al., 2020) is versatile: it provides different static visualizations, temporal network measures,
algorithms for community detection, and has methods to help using neuroimaging data. Tacoma
(Maier, 2018) is the most advanced in terms of visualizations, with interactive dynamic plotting
functions. It also provides functions to simulate spreading processes. Some of its core routines
are written in C++, improving its speed. Reticula (Badie-Modiri & Kivelä, 2023) has a C++
backbone and is a general-purpose package with several generative models and randomization
algorithms. Raphtory is also general-purpose and written in Rust for speed, yet accessible as a
Python library (Steer et al., 2023). DyNetX (Rossetti et al., 2020) provides a class for directed
temporal networks as well as a method to compute time-respecting paths. RandTempNet
(Génois, 2019) is more specifically focused on temporal network randomization algorithms. The
flow_stability repository (Bovet et al., 2022) provides code for the detection of time-varying
communities in temporal networks, similarly to tnetwork (Cazabet, 2019). Pathpy (Hackl et al.,
2021)] has a slightly different focus: it provides tools to analyze higher-order path correlations
(or memory) in time-stamped data,

A few libraries also exist in other programming languages. In R, ndtv (Bender-deMoll, 2016)
focuses on the visualization of temporal networks, both static and animated. In C, P. Holme
provides a fast implementation of the susceptible-infected-recovered (SIR) epidemic model on
temporal networks (Holme, 2021). TimeNexus (Pierrelée et al., 2021) is a general-purpose
Cytoscape app for temporal networks with emphasis on modeling gene expression data.

Similarly to these libraries, Phasik provides general classes, measures, and visualizations
functions. However, it distinguishes itself by having a specific focus on the identification
of temporal phases, and system states, in complex systems for a range of time-scales from
(partially) temporal networks. Concretely, Phasik provides a PartiallyTemporalNetwork class
and classes dedicated to the clustering of snapshots for the identification of phases. Phasik
also naturally handles unevenly spaced time points, which can result from experimental data,
especially in biology. Phasik was initially designed with biological networks in mind but the
analysis pipeline it provides is general and can be used on any other type of temporal data.

Lucas et al. (2023). Phasik: a Python package to identify system states in partially temporal networks. Journal of Open Source Software, 8(91),
5872. https://doi.org/10.21105/joss.05872.

2

https://doi.org/10.21105/joss.05872

Overview

Time

T
im

e

D
is

ta
nc

e

Time

2

3

4

cl

us
te

rs

ClusterSet

ClusterSets

TemporalNetwork

PartiallyTemporalNetwork

DistanceMatrix

Data:
Interaction (graph)
+
temporal (time series)

a

b

c

d w(t)

w
(t)

w(t)cs
t

a

b

c

d

Figure 1: The Phasik pipeline to identify phases. First, a partially temporal network is built from data,
such as interaction data (a graph) and (node) time series. Second, the distances between snapshots of
the temporal network at different times are encoded in a distance matrix, similar to a recurrence matrix.
Finally, clusters of snapshots are computed from the distance matrix. Each snapshot is associated to a
time point, so that the resulting clusters of snapshots correspond to periods of time—–phases. In this
example, time series are available for only three out of four nodes. Consequently, a partially temporal
network is built, in which the edges without temporal information are set to a constant weight.

The library is composed of two core classes for temporal networks (TemporalNetwork and its
child class PartiallyTemporalNetwork) as well as three additional classes designed for the
identification of phases (DistanceMatrix, ClusterSet, and ClusterSets). Phasik’s workflow
consists of three main steps, as illustrated in Figure 1. First, we build a TemporalNetwork by
combining time series data to interaction data in the form of a network. Second, we compute
a DistanceMatrix which encodes the distance between the instantaneous snapshot of the
temporal network between any two time points, similarly to a recurrence matrix. Third, we
partition the temporal network into phases, through its DistanceMatrix, by clustering its
snapshots. One can compute a single partition, or several partitions corresponding to different
numbers of clusters.

This workflow is conveniently implemented through constructor methods: at each step, the new
class instance is built from that of the previous step with “.from_*”-named methods. For exam-
ple, the second step takes the form DM = pk.DistanceMatrix.from_temporal_network(TN),
where TN is a TemporalNetwork (a distance metric also needs to be specified).

The library provides several ways to build a TemporalNetwork from data. Temporal information
is always required and can be of three formats: (1) temporal edges, i.e. tuples (i, j, t, w)
to represent an interaction between nodes i and j and at time t with weight w, (2) time
series relative to nodes (see Figure 1), and (3) time series relative to edges. Node time
series are automatically combined to form edge time series: by default, two node series are
multiplied and normalized to form an edge time series (other ways can be specified by the user).
Interaction data in the form of a graph can optionally be used as input. In some experimental
scenarios, temporal information is not available for all edges in a graph. This then results
in a PartiallyTemporalNetwork, where edges without temporal information are assigned a
constant default weight of one. Phasik provides basic functions to visualize, animate, and
analyze the resulting temporal network.

The DistanceMatrix can be computed after specifying a distance metric (by default, Euclidean
distance is used). Finally, after specifying a clustering method with related parameters, and
a number of clusters to compute, one can compute a ClusterSet (by default, hierarchical
clustering is used). If a range of numbers of clusters is given, the library computes a CluserSets

instead. At each step, Phasik provides visualization functions that can be fine-tuned by the
user.

Lucas et al. (2023). Phasik: a Python package to identify system states in partially temporal networks. Journal of Open Source Software, 8(91),
5872. https://doi.org/10.21105/joss.05872.

3

https://doi.org/10.21105/joss.05872

Projects using Phasik
Phasik was originally designed to conduct the research presented in (Lucas et al., 2023). Phasik
has also been compared to related software in (Badie-Modiri & Kivelä, 2023; Steer et al.,
2023).

Acknowledgements
We thanks Alain Barrat for useful discussions during the development of the library.

References
Badie-Modiri, A., & Kivelä, M. (2023). Reticula: A temporal network and hypergraph analysis

software package. SoftwareX, 21, 101301. https://doi.org/10.1016/j.softx.2022.101301

Barrat, A., Cattuto, C., Colizza, V., Gesualdo, F., Isella, L., Pandolfi, E., Pinton, J.-F., Ravà,
L., Rizzo, C., Romano, M., & others. (2013). Empirical temporal networks of face-to-face
human interactions. The European Physical Journal Special Topics, 222, 1295–1309.
https://doi.org/10.1140/epjst/e2013-01927-7

Bender-deMoll, S. (2016). ndtv: Network Dynamic Temporal Visualizations (Version 0.10).
https://github.com/statnet/ndtv

Bovet, A., Delvenne, J.-C., & Lambiotte, R. (2022). Flow stability for dynamic community
detection. Science Advances, 8(19), eabj3063. https://doi.org/10.1126/sciadv.abj3063

Cazabet, R. (2019). tnetwork: A Python software package to manipulate temporal networks
(Version 0.5.0). https://github.com/Yquetzal/tnetwork/

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695. https://igraph.org

Gelardi, V., Fagot, J., Barrat, A., & Claidière, N. (2019). Detecting social (in) stability
in primates from their temporal co-presence network. Animal Behaviour, 157, 239–254.
https://doi.org/10.1016/j.anbehav.2019.09.011

Génois, M. (2019). RandTempNet: A collection of Python script for temporal networks.
https://github.com/mgenois/RandTempNet

Ghosh, D., Frasca, M., Rizzo, A., Majhi, S., Rakshit, S., Alfaro-Bittner, K., & Boccaletti, S.
(2022). The synchronized dynamics of time-varying networks. Physics Reports, 949, 1–63.
https://doi.org/10.1016/j.physrep.2021.10.006

Hackl, J., Scholtes, I., Petrović, L. V., Perri, V., Verginer, L., & Gote, C. (2021). Analysis and
visualisation of time series data on networks with pathpy. Companion Proceedings of the
Web Conference 2021, 530–532. https://doi.org/10.1145/3442442.3452052

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings
of the 7th Python in Science Conference (pp. 11–15). https://conference.scipy.org/
proceedings/SciPy2008/paper_2/

Holme, P. (2021). Fast and principled simulations of the SIR model on temporal networks.
PLOS ONE, 16(2), e0246961. https://doi.org/10.1371/journal.pone.0246961

Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.
https://doi.org/10.1016/j.physrep.2012.03.001

Koch, C., & Nasmyth, K. (1994). Cell cycle regulted transcription in yeast. Current Opinion
in Cell Biology, 6(3), 451–459. https://doi.org/10.1016/0955-0674(94)90039-6

Lucas et al. (2023). Phasik: a Python package to identify system states in partially temporal networks. Journal of Open Source Software, 8(91),
5872. https://doi.org/10.21105/joss.05872.

4

https://doi.org/10.1016/j.softx.2022.101301
https://doi.org/10.1140/epjst/e2013-01927-7
https://github.com/statnet/ndtv
https://doi.org/10.1126/sciadv.abj3063
https://github.com/Yquetzal/tnetwork/
https://igraph.org
https://doi.org/10.1016/j.anbehav.2019.09.011
https://github.com/mgenois/RandTempNet
https://doi.org/10.1016/j.physrep.2021.10.006
https://doi.org/10.1145/3442442.3452052
https://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://doi.org/10.1371/journal.pone.0246961
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/0955-0674(94)90039-6
https://doi.org/10.21105/joss.05872

Longa, A., Cencetti, G., Lehmann, S., Passerini, A., & Lepri, B. (2022). Neighbourhood
matching creates realistic surrogate temporal networks. arXiv:2205.08820. https://doi.
org/10.48550/arXiv.2205.08820

Loomis, A. L., Harvey, E. N., & Hobart, G. A. (1937). Cerebral states during sleep, as
studied by human brain potentials. Journal of Experimental Psychology, 21(2), 127.
https://doi.org/10.1037/h0057431

Lucas, M., Fanelli, D., Carletti, T., & Petit, J. (2018). Desynchronization induced by time-
varying network. Europhysics Letters, 121(5), 50008. https://doi.org/10.1209/0295-5075/
121/50008

Lucas, M., Morris, A., Townsend-Teague, A., Tichit, L., Habermann, B. H., & Barrat, A.
(2023). Inferring cell cycle phases from a partially temporal network of protein interactions.
Cell Reports Methods, 100397. https://doi.org/10.1016/j.crmeth.2023.100397

Maier, B. F. (2018). tacoma: A Python library for TemporAl COntact Modeling and Analysis.
https://github.com/benmaier/tacoma

Masuda, N., & Holme, P. (2019). Detecting sequences of system states in temporal networks.
Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37534-2

Pedreschi, N., Bernard, C., Clawson, W., Quilichini, P., Barrat, A., & Battaglia, D. (2020).
Dynamic core-periphery structure of information sharing networks in entorhinal cortex and
hippocampus. Network Neuroscience, 4(3), 946–975. https://doi.org/10.1162/netn_a_
00142

Peixoto, T. P. (2014). The graph-tool Python library. Figshare. https://doi.org/10.6084/m9.
figshare.1164194

Pierrelée, M., Reynders, A., Lopez, F., Moqrich, A., Tichit, L., & Habermann, B. H. (2021).
Introducing the novel cytoscape app TimeNexus to analyze time-series data using temporal
MultiLayer networks (tMLNs). Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/
s41598-021-93128-5

Rossetti, G., bot, pyup.io, Utku Norman, dormanh, & Dorner, M. (2020). DyNetx: Dynamic
network analysis library (Version v0.2.1). Zenodo. https://doi.org/10.5281/zenodo.
3953119

SocioPatterns: A collection of contacts datasets. (2008). http://www.sociopatterns.org/
datasets/

Steer, B., Arnold, N., Ba, C. T., Lambiotte, R., Yousaf, H., Jeub, L., Murariu, F., Kapoor, S.,
Rico, P., Chan, R., & others. (2023). Raphtory: The temporal graph engine for rust and
python. arXiv:2306.16309. https://doi.org/10.48550/arXiv.2306.16309

Thompson, W. H., granitz, Harlalka, V., & lcandeago. (2020). Teneto: A Python library
for Temporal Network Tools (Version 0.5.0). Zenodo. https://doi.org/10.5281/zenodo.
3626827

Lucas et al. (2023). Phasik: a Python package to identify system states in partially temporal networks. Journal of Open Source Software, 8(91),
5872. https://doi.org/10.21105/joss.05872.

5

https://doi.org/10.48550/arXiv.2205.08820
https://doi.org/10.48550/arXiv.2205.08820
https://doi.org/10.1037/h0057431
https://doi.org/10.1209/0295-5075/121/50008
https://doi.org/10.1209/0295-5075/121/50008
https://doi.org/10.1016/j.crmeth.2023.100397
https://github.com/benmaier/tacoma
https://doi.org/10.1038/s41598-018-37534-2
https://doi.org/10.1162/netn_a_00142
https://doi.org/10.1162/netn_a_00142
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1038/s41598-021-93128-5
https://doi.org/10.1038/s41598-021-93128-5
https://doi.org/10.5281/zenodo.3953119
https://doi.org/10.5281/zenodo.3953119
http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/datasets/
https://doi.org/10.48550/arXiv.2306.16309
https://doi.org/10.5281/zenodo.3626827
https://doi.org/10.5281/zenodo.3626827
https://doi.org/10.21105/joss.05872

	Summary
	Statement of need
	Related software
	Overview
	Projects using Phasik
	Acknowledgements
	References

