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Summary
Phasik is a Python library for analyzing the temporal structure of temporal and partially
temporal networks. Temporal networks are used to model complex systems that consist of
entities with time-varying interactions. This library provides methods for building temporal
networks (including from data), visualizing them, and analyzing their structure. In particular,
Phasik focuses on the identification of temporal phases, that is, periods of time during which
the system is in a given state. The library supports partially temporal networks for which
information about only a subset of the edges’ temporal evolution is available. Phasik is
implemented in pure Python and integrates with the rest of the Python scientific stack.

Statement of need
Temporal networks allow to model a wide range of complex systems (Holme & Saramäki,
2012), and study both their structure (Longa et al., 2022) and dynamics (Ghosh et al., 2022;
Lucas et al., 2018). As such, temporal networks are used by scientists from different fields and
backgrounds. To help non-specialists apply temporal network theory, common and ready-to-use
computational tools are therefore crucial. For traditional static networks, several Python
libraries have had a big impact on the field. Examples include igraph (Csardi & Nepusz,
2006), NetworkX (Hagberg et al., 2008), and graph-tool (Peixoto, 2014). Temporal networks,
however, include time as an additional dimension and thus require different approaches. There
exist several Python libraries for working with temporal networks, each focusing on different
aspects of temporal networks analysis. None of these libraries, however, focuses on identifying
the temporal structure of a complex system, which is often intricately linked to the system’s
function. Systems for which the temporal structure is crucial span many scientific fields, with
example including the phases and subphases of the cell cycle (biology) (Koch & Nasmyth,
1994), the five sleep stages the brain goes through (medicine) (Loomis et al., 1937), or the
phases of social dynamics a school goes through in a day (Masuda & Holme, 2019). A popular
repository for temporal network data is SocioPatterns (Barrat et al., 2013; SocioPatterns,
2008). Very often, understanding the temporal structure of such systems is a first step towards
understanding the underlying mechanisms at play. A handful of studies have applied temporal
network theory to identify these system states from data (Gelardi et al., 2019; Masuda &
Holme, 2019; Pedreschi et al., 2020).
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Related software
There exist a few Python libraries for analyzing temporal networks, each with a different
focus. Most of them provide a base TemporalNetwork class, methods for manually adding
and removing temporal edges, and methods for calculating basic quantities such as degree,
snapshots of the temporal network at a given time, or neighbors. Teneto (Thompson et
al., 2020) is versatile: it provides different static visualizations, temporal network measures,
algorithms for community detection, and has methods to help using neuroimaging data. Tacoma
(Maier, 2018) is the most advanced in terms of visualizations, with interactive dynamic plotting
functions. It also provides functions to simulate spreading processes. Some of its core routines
are written in C++, improving its speed. Reticula (Badie-Modiri & Kivelä, 2023) has a C++
backbone and is a general-purpose package with several generative models and randomization
algorithms. Raphtory is also general-purpose and written in Rust for speed, yet accessible as a
Python library (Steer et al., 2023). DyNetX (Rossetti et al., 2020) provides a class for directed
temporal networks as well as a method to compute time-respecting paths. RandTempNet
(Génois, 2019) is more specifically focused on temporal network randomization algorithms. The
flow_stability repository (Bovet et al., 2022) provides code for the detection of time-varying
communities in temporal networks, similarly to tnetwork (Cazabet, 2019). Pathpy (Hackl et al.,
2021)] has a slightly different focus: it provides tools to analyze higher-order path correlations
(or memory) in time-stamped data,

A few libraries also exist in other programming languages. In R, ndtv (Bender-deMoll, 2016)
focuses on the visualization of temporal networks, both static and animated. In C, P. Holme
provides a fast implementation of the susceptible-infected-recovered (SIR) epidemic model on
temporal networks (Holme, 2021). TimeNexus (Pierrelée et al., 2021) is a general-purpose
Cytoscape app for temporal networks with emphasis on modeling gene expression data.

Similarly to these libraries, Phasik provides general classes, measures, and visualizations
functions. However, it distinguishes itself by having a specific focus on the identification
of temporal phases, and system states, in complex systems for a range of time-scales from
(partially) temporal networks. Concretely, Phasik provides a PartiallyTemporalNetwork class
and classes dedicated to the clustering of snapshots for the identification of phases. Phasik
also naturally handles unevenly spaced time points, which can result from experimental data,
especially in biology. Phasik was initially designed with biological networks in mind but the
analysis pipeline it provides is general and can be used on any other type of temporal data.
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Overview
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Figure 1: The Phasik pipeline to identify phases. First, a partially temporal network is built from data,
such as interaction data (a graph) and (node) time series. Second, the distances between snapshots of
the temporal network at different times are encoded in a distance matrix, similar to a recurrence matrix.
Finally, clusters of snapshots are computed from the distance matrix. Each snapshot is associated to a
time point, so that the resulting clusters of snapshots correspond to periods of time—–phases. In this
example, time series are available for only three out of four nodes. Consequently, a partially temporal
network is built, in which the edges without temporal information are set to a constant weight.

The library is composed of two core classes for temporal networks (TemporalNetwork and its
child class PartiallyTemporalNetwork) as well as three additional classes designed for the
identification of phases (DistanceMatrix, ClusterSet, and ClusterSets). Phasik’s workflow
consists of three main steps, as illustrated in Figure 1. First, we build a TemporalNetwork by
combining time series data to interaction data in the form of a network. Second, we compute
a DistanceMatrix which encodes the distance between the instantaneous snapshot of the
temporal network between any two time points, similarly to a recurrence matrix. Third, we
partition the temporal network into phases, through its DistanceMatrix, by clustering its
snapshots. One can compute a single partition, or several partitions corresponding to different
numbers of clusters.

This workflow is conveniently implemented through constructor methods: at each step, the new
class instance is built from that of the previous step with “.from_*”-named methods. For exam-
ple, the second step takes the form DM = pk.DistanceMatrix.from_temporal_network(TN),
where TN is a TemporalNetwork (a distance metric also needs to be specified).

The library provides several ways to build a TemporalNetwork from data. Temporal information
is always required and can be of three formats: (1) temporal edges, i.e. tuples (i, j, t, w)
to represent an interaction between nodes i and j and at time t with weight w, (2) time
series relative to nodes (see Figure 1), and (3) time series relative to edges. Node time
series are automatically combined to form edge time series: by default, two node series are
multiplied and normalized to form an edge time series (other ways can be specified by the user).
Interaction data in the form of a graph can optionally be used as input. In some experimental
scenarios, temporal information is not available for all edges in a graph. This then results
in a PartiallyTemporalNetwork, where edges without temporal information are assigned a
constant default weight of one. Phasik provides basic functions to visualize, animate, and
analyze the resulting temporal network.

The DistanceMatrix can be computed after specifying a distance metric (by default, Euclidean
distance is used). Finally, after specifying a clustering method with related parameters, and
a number of clusters to compute, one can compute a ClusterSet (by default, hierarchical
clustering is used). If a range of numbers of clusters is given, the library computes a CluserSets

instead. At each step, Phasik provides visualization functions that can be fine-tuned by the
user.
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Projects using Phasik
Phasik was originally designed to conduct the research presented in (Lucas et al., 2023). Phasik
has also been compared to related software in (Badie-Modiri & Kivelä, 2023; Steer et al.,
2023).
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