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Statement of need
Spectroscopic techniques (e.g. Raman, photoluminescence, reflectance, transmittance, X-ray
fluorescence) are an important and widely used resource in different fields of science, such
as photovoltaics (Fonoll-Rubio et al., 2022) (Grau-Luque et al., 2021), cancer (Bellisola &
Sorio, 2012), superconductors (Fischer et al., 2007), polymers (Easton et al., 2020), corrosion
(Haruna et al., 2023), forensics (P. V. Bhatt & Rawtani, 2023), and environmental sciences
(Estefany et al., 2023), to name just a few. This is due to the versatile, non-destructive and
fast acquisition nature that provides a wide range of material properties, such as composition,
morphology, molecular structure, optical and electronic properties. As such, machine learning
(ML) has been used to analyze spectral data for several years, elucidating their vast complexity,
and uncovering further potential on the information contained within them (Goodacre, 2003)
(Luo et al., 2022). Unfortunately, most of these ML analyses lack further interpretation of
the derived results due to the complex nature of such algorithms. In this regard, interpreting
the results of ML algorithms has become an increasingly important topic, as concerns about
the lack of interpretability of these models have grown (Burkart & Huber, 2021). In natural
sciences (like materials, physical, chemistry, etc.), as ML becomes more common, this concern
has gained especial interest, since results obtained from ML analyses may lack scientific value
if they cannot be properly interpreted, which can affect scientific consistency and strongly
diminish the significance and confidence in the results, particularly when tackling scientific
problems (Roscher et al., 2020).

Even though there are methods and libraries available for explaining different types of algorithms
such as SHAP (Lundberg et al., 2017), LIME (Ribeiro et al., 2016), or GradCAM (Selvaraju
et al., 2017), they can be difficult to interpret or understand even for data scientists, leading
to problems such as miss-interpretation, miss-use and over-trust (Kaur et al., n.d.). Adding
this to other human-related issues (Krishnå1 et al., 2022), researchers with expertise in
natural sciences with little or no data science background may face further issues when using
such methodologies (Zhong et al., 2022). Furthermore, these types of libraries normally aim
for problems composed of image, text, or tabular data, which cannot be associated in a
straightforward way with spectroscopic data. On the other hand, time series (TS) data shares
similarities with spectroscopy, and while still having specific needs and differences, TS dedicated
tools can be a better approach. Unfortunately, despite the existence of several libraries that
aim to explain models for TS with the potential to be applied to spectroscopic data, they
are mostly designed for a specialized audience, and many are model-specific (Rojat et al.,
2021). Moreover, spectral data normally manifests as an array of peaks that are typically
overlapped and can be distinguished by their shape, intensity, and position. Minor shifts in
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these patterns can indicate significant alterations in the fundamental properties of the subject
material. Conversely, pronounced variations in the other case might only indicate negligible
differences. Therefore, comprehending such alterations and their implications is paramount.
This is still true with ML spectroscopic analysis where the spectral variations are still of
primary concern. In this context, a tool with an easy and understandable approach that offers
spectroscopy-aimed functionalities that allow to aim for specific patterns, areas, and variations,
and that is beginner and non-specialist friendly is of high interest. This can help the different
stakeholders to better understand the ML models that they employ and considerably increase
the transparency, comprehensibility, and scientific impact of ML results (U. Bhatt et al., 2020)
(Belle & Papantonis, 2021).

Overview
pudu is a Python library that quantifies the effect of changes in spectral features over the
predictions of ML models and their effect to the target instances. In other words, it perturbates
the features in a predictable and deliberate way and evaluates the features based on how the
final prediction changes. For this, four main methods are included and defined. Importance
quantifies the relevance of the features according to the changes in the prediction. Thus, this
is measured in probability or target value difference for classification or regression problems,
respectively. Speed quantifies how fast a prediction changes according to perturbations in the
features. For this, the importance is calculated at different perturbation levels, and a line is
fitted to the obtained values and the slope, or the rate of change of importance, is extracted
as the speed. Synergy indicates how features complement each other in terms of prediction
change after perturbations. Finally, re-activations account for the number of unit activations
in a Convolutional Neural Network (CNN) that after perturbation, the value goes above the
original activation criteria. The latter is only applicable for CNNs, but the rest can be applied
to any other ML problem, including CNNs. To read in more detail how these techniques work,
please refer to the definitions in the documentation.

pudu is versatile as it can analyze classification and regression algorithms for both 1- and
2-dimensional problems, offering plenty of flexibility with parameters, and the ability to provide
localized explanations by selecting specific areas of interest. To illustrate this, Figure 1 shows
two analysis instances using the same importance method but with different parameters.
Additionally, its other functionalities are shown in examples using scikit-learn (Pedregosa
et al., 2011), keras (Chollet et al., 2018), and localreg (Marholm, 2022) are found in the
documentation, along with XAI methods including LIME and GradCAM.

pudu is built in Python 3 (Van Rossum & Drake, 2009) and uses third-party packages including
numpy (Harris et al., 2020), matplotlib (Caswell et al., 2021), and keras. It is available
in both PyPI and conda, and comes with complete documentation, including quick start,
examples, and contribution guidelines. Source code and documentation are available in
https://github.com/pudu-py/pudu.
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Figure 1: Two ways of using the same method importance by A) using a sequential change pattern over
all the spectral features and B) selecting peaks of interest. These spectras are measured from thin-film
photovoltaic samples and are correlated to their performance using ML, as explained in (Fonoll-Rubio et
al., 2022). In A), the vector was divided in window sizes of 25 pixels were perturbed individually. The
impact of the peak in the range of 1200-1400 opaques the impact of the rest. In contrast, in B) specific
ranges are defined, so only the first four main peaks are selected to be analyzed and better visualize their
impact in the prediction.
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