
The plebeian Graph Library: A WebGL based network
visualisation and diagnostics package
Indrajeet Haldar 1

1 Graduate School of Design, Harvard University, USA
DOI: 10.21105/joss.05887

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @abhishektiwari
• @acrlakshman

Submitted: 09 September 2023
Published: 25 April 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Given a large network (greater than one million nodes), visualising and diagnosing network
data has often proven challenging (Nowogrodzki, 2015). Although there is a wide range of
statistical tools to draw inferences, the esoteric nature of the statistical analysis of networks
limits the communication of the findings to researchers familiar with these research methods
(Tobi & Kampen, 2018). Statistical analyses may not always capture the nuanced patterns
and correlations within complex datasets, a limitation that visual inspection can overcome
(Vaishnavi et al., 2016). The Plebeian Graph Library (PGL) is a library that solves for the
visualisation of large networks and their diagnostic study. PGL enables a deeper, more intuitive
understanding of intricate processes such as network diffusion by allowing for direct, interactive
exploration of data bridging the gap between raw data and actionable insights.

Introduction
PGL is a JavaScript library, written in Typescript (Bierman et al., 2014), designed to facilitate
the visualisation and diagnostic analysis of large-scale network data in browsers using WebGL,
using a backend provided by ThreeJS (Danchilla, 2012). Whether dealing with local datasets
or data retrieved from online sources (APIs), PGL provides a versatile platform for conducting
extensive network simulations, physical modelling, and visualisations whilst offering a range of
diagnostic tools for organising network data using standard search algorithms (Mattson et al.,
2013) such as network diffusions, breadth-first search, depth-first search, and Dijkstra’s search
algorithm. With a rich set of diagnostic features, including network condensation, weighted
edge pruning in highly connected graphs, and support for visualisation techniques like Kamada
Kawai layouts (Kamada & Kawai, 1989), hierarchical plots, hive plots, and edge bundling
(Bourqui et al., 2016), PGL empowers researchers to gain valuable insights from complex
network structures. Additionally, PGL contains the canonical example of the Zackary’s Karate
Club (ZKC) dataset (Zachary, 1977) and Erdosh Reyni Random Graph model (Li, 2021) as a
generator to study and compare network structures.

An illustrative case for the package is to diagnose large-scale network diffusion. Visualising
a clustered network in 3D, where, for example, the network nodes are displaced vertically
according to their recursive importance, i.e., eigenvector centralities (Lacobucci et al., 2017). A
diffusion simulation is then run, and insights and diagnostics of diffusion sequences are gathered.
For example, we can observe graphically whether diffusion first occurs between high eigenvector
centrality nodes across clusters or instead appears in the groups before spreading to other
clusters. This enables the visual study of the strength of weak ties behaviour (Granovetter,
1973). Exploratory research, analysis, communication, and documentation of these network
behaviours, as mentioned above, would have been complex using a traditional visualisation
library where the emphasis lies on validation instead of exploratory study and diagnostics.

Haldar. (2024). The plebeian Graph Library: A WebGL based network visualisation and diagnostics package. Journal of Open Source Software,
9(96), 5887. https://doi.org/10.21105/joss.05887.

1

https://orcid.org/0000-0001-8395-6056
https://doi.org/10.21105/joss.05887
https://github.com/openjournals/joss-reviews/issues/5887
https://github.com/range-et/PGL
https://doi.org/10.5281/zenodo.10871132
https://www.linkedin.com/in/fortinbras/
https://orcid.org/0000-0001-5215-101X
https://github.com/abhishektiwari
https://github.com/acrlakshman
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05887


Statement of need
PGL addresses several critical needs in large-scale graph data visualization. Existing software
solutions for visualizing large datasets, such as Gephi (Bastian et al., 2009), are limited to
local machine installations, restricting accessibility and compatibility across various devices.
Additionally, browser-based software libraries like Vis.JS (Almende B.V., 2017) and D3 (Bostock
et al., 2011), which rely on Scalable Vector Graphics (SVG), often lack the scalability to
analyze complex network structures. This reliance on SVG imposes performance limitations
and restricts visualizations to two dimensions.

In contrast, PGL offers a robust browser-based solution leveraging WebGL through the ThreeJS
Library. This enables it to surpass traditional two-dimensional representations’ limitations.
PGL is primarily designed for client-side rendering, taking full advantage of the capabilities of
WebGL to deliver dynamic and interactive visualizations directly within the browser. While it
focuses on client-side rendering, the underlying graph algorithms of PGL can also be utilized
in server-side processes, providing flexibility in application architecture.

A performance benchmark conducted against D3, an industry-standard visualization library,
showcases PGL’s capabilities. In this test involving rendering a graph of approximately 5,000
nodes and 200,000 edges, D3-based SVG graphs only achieved a frame rate of 1.5 frames per
second, bottoming at a frame every two seconds with a maximum of 12 frames per second.
In contrast, PGL maintained a minimum of 52 frames per second and averaging 58 frames
per second under similar conditions. This benchmark, performed on both Firefox and Chrome
browsers (with negligible differences in performance) on a computer with an Nvidia RTX
2080 GPU, highlights PGL’s superior performance and efficiency in rendering complex network
visualizations.

Furthermore, PGL’s three-dimensional rendering approach allows for a more comprehensive
range of data stratification methods and facilitates more immersive and interactive visualizations.
The ability to navigate information-dense networks in three dimensions significantly reduces
visual noise and enhances clarity in diagnosing large-scale networks. Since its inception, PGL
has been instrumental in my academic research, especially in the exploration of large-scale
social networks. This is documented in my thesis, “On the Mathematics of Memetics” (Haldar,
2022), where it served as a crucial tool for generating primary inferences.

Usage
Existing network libraries like NetworkX (Hagberg et al., 2008) strongly influenced the semantics
of the graph library and borrowed some of the semantic ideas from ThreeJS. The overall
structure is to define a Graph Object made of nodes and edges. Then, modify this graph
based on some properties and update the relevant settings. Lastly, visualise the nodes as point
clouds, boxes or cylinders, and draw out the edges (bundled or not). The following is a short
example of the canonical ZKC dataset visualised in the library, simulated with Edge bundling.

First, initialize a node project and install the library using:

npm i plebeiangraphlibrary

Then

// import the library

import * as PGL from "plebeiangraphlibrary";

async function createVisualization() {

// Load up the ZKC dataset

const zkcSimulated = await PGL.SampleData.LoadZKCSimulated();

Haldar. (2024). The plebeian Graph Library: A WebGL based network visualisation and diagnostics package. Journal of Open Source Software,
9(96), 5887. https://doi.org/10.21105/joss.05887.

2

https://doi.org/10.21105/joss.05887


// Attach the renderer to a div which is on an HTML that the script is linked too

const canvas = document.getElementById("displayCanvas");

// These are some basic options to set up a graph drawing object. Please refer to the documentation for more options

const graphDrawerOptions = {

graph: zkcSimulated,

width: 800,

height: 700,

canvas: canvas,

};

// Initialize a graph with these settings

const graph3d = new PGL.GraphDrawer.GraphDrawer3d(graphDrawerOptions);

await graph3d.init();

// Create the 3d elements for the graph

// first describe a global scaling factor

const bounds = 1;

// Create all the geometry associated with node elements

const nodeVisualElements = PGL.ThreeWrapper.DrawTHREEBoxBasedVertices(

zkcSimulated,

bounds,

0xffffff,

5

);

// add the node geometry to the scene

graph3d.addVisElement(nodeVisualElements);

// then create all the geometry associated with the edge elements

const edgeVisualElements = PGL.ThreeWrapper.DrawTHREEGraphEdgesThick(

zkcSimulated,

bounds,

0xffafcc,

0.02

);

// add the edge geometry to the scene

graph3d.addVisElement(edgeVisualElements);

// by default the camera revolves around the graph, trigger the animation call

function animate() {

requestAnimationFrame(animate);

graph3d.rendercall();

}

animate();

}

createVisualization();

Documentation
Package documentation is available on GitHub. Guides for general usage and detailed descriptors
of all the functions are also included. Further documentation is available at https://www.
plebeiangraphlibrary.com/. Examples are available at https://www.plebeiangraphlibrary.com/
examples.html. The example described above is documented at https://github.com/range-et/
pgl_example.

Haldar. (2024). The plebeian Graph Library: A WebGL based network visualisation and diagnostics package. Journal of Open Source Software,
9(96), 5887. https://doi.org/10.21105/joss.05887.

3

https://www.plebeiangraphlibrary.com/
https://www.plebeiangraphlibrary.com/
https://www.plebeiangraphlibrary.com/examples.html
https://www.plebeiangraphlibrary.com/examples.html
https://github.com/range-et/pgl_example
https://github.com/range-et/pgl_example
https://doi.org/10.21105/joss.05887


Acknowledgements
The Geometry Lab, under the Laboratory for Design Technologies at the Graduate School of
Design at Harvard University, funded this project.

References
Almende B.V. (2017). vis.js: A dynamic, browser-based visualization library. https://visjs.org/.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring
and manipulating networks. International AAAI Conference on Weblogs and Social Media.
https://doi.org/10.1609/icwsm.v3i1.13937

Bierman, G., Abadi, M., & Torgersen, M. (2014). Understanding typescript. European
Conference on Object-Oriented Programming, 257–281. https://doi.org/10.1007/
978-1-4842-4979-6_2

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12), 2301–2309. https://doi.org/10.1109/
TVCG.2011.185

Bourqui, R., Ienco, D., Sallaberry, A., & Poncelet, P. (2016). Multilayer graph edge bundling.
2016 IEEE Pacific Visualization Symposium (PacificVis), 184–188. https://doi.org/10.
1109/PACIFICVIS.2016.7465267

Danchilla, B. (2012). Three.js framework. Beginning WebGL for HTML5.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6),
1360–1380. https://doi.org/10.1093/oso/9780195159509.003.0010

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics,
and function using NetworkX. Proceedings of the 7th Python in Science Conference
(SciPy2008), 11–15.

Haldar, I. (2022). On the mathematics of memetics [Master’s thesis]. Graduate School of
Design, Harvard University.

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1), 7–15. https://doi.org/10.1142/9789814434478_
0005

Lacobucci, D., McBride, R., & Popovich, D. L. (2017). Eigenvector centrality: Illustrations
supporting the utility of extracting more than one eigenvector to obtain additional insights
into networks and interdependent structures. Journal of Social Structure, 18(1), 1–22.
https://doi.org/10.21307/joss-2018-003

Li, J. (2021). Brief overview of graph theory: Erdos-renyi random graph model and small
world phenomenon. University of Chicago.

Mattson, T., Bader, D., Berry, J., Buluç, A., Dongarra, J., Faloutsos, C., Feo, J., Gilbert,
J., Gonzalez, J., Hendrickson, B., Kepner, J., Leiserson, C., Lumsdaine, A., Padua, D.,
Poole, S., Reinhardt, S., Stonebraker, M., Wallach, S., & Yoo, A. (2013). Standards for
graph algorithm primitives. 2013 IEEE High Performance Extreme Computing Conference
(HPEC), 1–2. https://doi.org/10.1109/HPEC.2013.6670338

Nowogrodzki, A. (2015). Eleven tips for working with large data sets. Nature, 527(7576),
105–107. https://doi.org/10.1038/d41586-020-00062-z

Tobi, H., & Kampen, J. K. (2018). Research design: The methodology for interdisciplinary
research framework. Quality & Quantity: International Journal of Methodology, 52(3),
1209–1225. https://doi.org/10.1007/s11135-017-0513-8

Haldar. (2024). The plebeian Graph Library: A WebGL based network visualisation and diagnostics package. Journal of Open Source Software,
9(96), 5887. https://doi.org/10.21105/joss.05887.

4

https://visjs.org/
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1007/978-1-4842-4979-6_2
https://doi.org/10.1007/978-1-4842-4979-6_2
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/PACIFICVIS.2016.7465267
https://doi.org/10.1109/PACIFICVIS.2016.7465267
https://doi.org/10.1093/oso/9780195159509.003.0010
https://doi.org/10.1142/9789814434478_0005
https://doi.org/10.1142/9789814434478_0005
https://doi.org/10.21307/joss-2018-003
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1038/d41586-020-00062-z
https://doi.org/10.1007/s11135-017-0513-8
https://doi.org/10.21105/joss.05887


Vaishnavi, K., Kannan, A., Cline, D., & Etemadpour, R. (2016). A visualization tool for learning
statistical analysis in multi tabular datasets. 2016 IEEE 16th International Conference on
Advanced Learning Technologies (ICALT), 222–226. https://doi.org/10.1109/ICALT.2016.
13

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33, 452–473. https://doi.org/10.1086/jar.33.4.
3629752

Haldar. (2024). The plebeian Graph Library: A WebGL based network visualisation and diagnostics package. Journal of Open Source Software,
9(96), 5887. https://doi.org/10.21105/joss.05887.

5

https://doi.org/10.1109/ICALT.2016.13
https://doi.org/10.1109/ICALT.2016.13
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.21105/joss.05887

	Summary
	Introduction
	Statement of need
	Usage
	Documentation
	Acknowledgements
	References

