The Journal of Open Source Software

DOI: 10.21105/joss.05901

Software
= Review @@
= Repository &0
= Archive &0

Editor: Vissarion Fisikopoulos @@
Reviewers:

= ©@Naeemkh

= @matt-graham

Submitted: 21 July 2023
Published: 09 January 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

OpenSkill: A faster asymmetric multi-team,
multiplayer rating system

Vivek Joshy ®1

1 Independent Researcher, India

Summary

In the realm of online gaming, player performance is often measured and compared through
a system called online ranking. This system assigns a “rank” to players based on their
performance and outcomes in games. A rank is a distinct level or position within a hierarchy
that ostensibly represents a player's skill relative to others. One common criticism of this
system is the phenomenon known as “Elo Hell”, a situation where players find themselves
trapped at a certain rank, unable to progress due to perceived flaws in how the ranking is
calculated or due to the influence of team dynamics (Aeschbach et al., 2023).

In the context of player ranking systems, several well-established models such as Elo and Glicko
2 have set the standard for performance measurement. However, a limitation becomes evident
when these commonly used systems are considered for games that extend beyond two-player
matchups. The Elo rating system (Elo, 1978), for one, was originally formulated for chess, a
head-to-head game, and it struggles to adapt to the complex dynamics of multiplayer scenarios.
Similarly, Glicko 2 (Glickman, 2001), while offering improvements in rating accuracy and
accounting for player rating volatility still falls short when tasked with accurately representing
the individual contributions within a team-oriented game setting.

This library represents a concrete implementation of an improved ranking system, specifically
engineered to address the distinctive challenges of multiplayer gaming environments. It
systematically corrects for the deficiencies of traditional ranking systems, providing a robust
solution that ensures a fair and dynamic evaluation of each player's skill level. In addition to
delivering accuracy on par with implementations of proprietary models like TrueSkill (Herbrich
& Graepel, 2006), this system distinguishes itself through its enhanced speed in computing the
ranks, facilitating a more responsive and gratifying player experience.

Statement of need

Bayesian inference of skill ratings from game outcomes is a crucial aspect of online video
game development and research. This is usually challenging because the players’ performance
changes over time and also varies based on who they are competing against. Our project
primarily targets game developers and researchers interested in ranking players fairly and
accurately. Nevertheless, the problem that the software solves applies to any context where
you have multiple players or entities and you need to track their skills over time while they
compete against each other.

The OpenSkill library furnishes a versatile suite of models and algorithms designed to support
a broad spectrum of applications. While popular use cases include assisting video game
developers and researchers dealing with multi-agent scripting environments like Neural MMO
(Suarez et al., 2019), its practical use extends far beyond this particular domain. For instance,
it finds substantial utilization in recommendation systems, where it efficiently gauges unique

Joshy. (2024). OpenSkill: A faster asymmetric multi-team, multiplayer rating system. Journal of Open Source Software, 9(93), 5901. https: 1

//doi.org/10.21105/joss.05901.

https://orcid.org/0000-0003-2443-8827
https://doi.org/10.21105/joss.05901
https://github.com/openjournals/joss-reviews/issues/5901
https://github.com/OpenDebates/openskill.py
https://doi.org/10.5281/zenodo.8280051
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/Naeemkh
https://github.com/matt-graham
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05901
https://doi.org/10.21105/joss.05901

The Journal of Open Source Software

user behaviours and preferences to suggest personalized recommendations. The matchmaking
mechanisms in ranking of sports players as seen by Opta Analyst (Rico, 2022) and dating apps
are another area where OpenSkill proves crucial, ensuring an optimal pairing based on the
comparative ranking of user profiles’ competencies.

Derived from the research paper by Weng and Lin (Weng & Lin, 2011), OpenSkill offers a pure
Python implementation of their Bayesian approximation method for probabilistic models of
ranked data. OpenSkill attempts to solve the same problems TrueSkill does. TrueSkill however
employs factor graphs to model the probability distributions of players’ skills, updating their
ranks through Bayesian inference after each game by evaluating the likelihood of observed
outcomes.

Similar to TrueSkill this library is specifically designed for asymmetric multi-faction multiplayer
games. In the games it's intended for, the term “asymmetric” means that teams might have
varying numbers of players. For example, one team could have three players while another
has just one. This creates an uneven playing field where the challenge is to balance these
differences. The term “multi-faction” means that there are several distinct teams or groups
within a single game. Unlike simple one-on-one contests, these games feature multiple teams,
each potentially with a different number of players, all competing in the same match. This
library aims to assess and balance player skill in such dynamic and complex game environments.

OpenSkill boasts several advantages over implementations of proprietary models like TrueSkill.
Notably, it delivers faster rating updates, with 3 times the performance of the popular Python
open-source implementation of TrueSkill as seen in Lee (2018). OpenSkill also includes five
distinct models, each with its unique characteristics and tradeoffs. While all the models are
general purpose, the recommended model for most use cases is Plackett-Luce. This model
extends the regular Plackett-Luce as described in Guiver & Snelson (2009) by incorporating
variance parameters to account for the probability that a certain team is the winner among a
set of competing teams.

The Plackett-Luce model can be thought of as a generalized extension of the Braldey-Terry
model originally introduced in Bradley & Terry (1952). Both models follow logistic distribution,
while in contrast, the Thurstone-Mosteller model follows the Gaussian distribution. Both
models can be also used with partial pairing and full pairing approaches for rating updates.
Partial pairing models engage only a subset of players who are paired with each other during
rating updates. This strategy considerably improves computational efficiency while sacrificing
a certain level of accuracy. On the other hand, full pairing models leverage all available
information within the paired data to make precise rating updates at the cost of increased
computational requirements.

Usage

To install the library simply pip install openskill and import the library. A conventional
example of usage is given below:

>>> from openskill.models import PlackettLuce

>>> model = PlackettLuce()

>>> model.rating()

PlackettLuceRating(mu=25.0, sigma=8.333333333333334)
>>> r = model.rating
>>> [[a, b]l, [x, yIl]
>>> [[a, bl, [x, yll
>>> a
PlackettLuceRating(mu=26.964294621803063, sigma=8.177962604389991)
>>> X

PlackettLuceRating(mu=23.035705378196937, sigma=8.177962604389991)

[Lr(), rO)1, [r(), r()1]
model.rate([[a, b]l, [x, yIl)

Joshy. (2024). OpenSkill: A faster asymmetric multi-team, multiplayer rating system. Journal of Open Source Software, 9(93), 5901. https: 2

//doi.org/10.21105/joss.05901.

https://doi.org/10.21105/joss.05901
https://doi.org/10.21105/joss.05901

JEISS

The Journal of Open Source Software

>>> (a == b) and (x == vy)
True

Each player has a mu and a sigma value corresponding to their skill (¢) and uncertainty (o) in
skill. Comparisons between two players can be done by calling the ordinal() method. In this
case it would be on the instances of PlackettLuceRating.

Benchmarks

A reproducible set of benchmarks is available in the benchmark/ folder at the root of the
openskill.py repository. Simply run the appropriate Jupyter Notebook file to run the relevant
benchmark.

Using a dataset of Overwatch (Joshy, 2023) matches and player info, OpenSkill predicts the
winners competitively with TrueSkill.

For games restricted to at least 2 matches per player:

OpenSkill - PlackettLuce TrueSkill

Correct Matches 556 587

Incorrect Matches 79 48
Accuracy 87.56% 92.44%

Runtime Duration 0.97s 3.41s

When restricted to 1 match per player:

OpenSkill - PlackettLuce TrueSkill

Correct Matches 799 830

Incorrect Matches 334 303
Accuracy 70.52% 73.26%

Runtime Duration 17.64s 58.35

Using a dataset of chess matches, we also see a similar trend, where OpenSkill gives a similar
predictive performance to TrueSkill, but in less time.

It should be noted that the difference in speed may be partially due to the the efficiency of the
TrueSkill implementation in question. For instance, switching to Scipy backend in the TrueSkill
implementation slows the inference to around 8 seconds even though we should be expecting a
speedup since Scipy drops into faster C code.

Finally, running the project against a large dataset of PUBG online matches results in a
Rank-Biased Overlap (Webber et al., 2010) of 64.11 and an accuracy of 92.03%.

Discussion

Our OpenSkill library has demonstrated significant improvements over proprietary models in
terms of both speed and efficiency. However, we recognize that there are still areas that
warrant further exploration and improvement.

One such area is partial play. Ideally, a comprehensive skill ranking system should take into
account both the winning and losing side of a game and adjust their ratings accordingly. Partial
play, where only a subset of players are engaged during a match, presents a unique challenge in
this regard. While it is theoretically easy to implement this feature, the lack of relevant data

Joshy. (2024). OpenSkill: A faster asymmetric multi-team, multiplayer rating system. Journal of Open Source Software, 9(93), 5901. https: 3

//doi.org/10.21105/joss.05901.

https://doi.org/10.21105/joss.05901
https://doi.org/10.21105/joss.05901

The Journal of Open Source Software

makes it difficult for us to verify its efficacy. Consequently, any modifications we make to such
models run the risk of overfitting the available data. The absence of a clearly defined metric
for partial play further complicates matters, as different groups interpret it in various ways.
Our interpretation of partial play pertains to the duration a player participates in a game, but
significant work is required to operationalize this concept in a tangible way within our library.

More substantially, as of now, OpenSkill does not support weight integration, where weights
represent a player’s contributions to an overall victory. The ability to assign different significance
to different players based on their contributions could greatly improve the accuracy of a player's
resulting skill rating. We realize the value of this feature, and it is a primary area of focus in
our ongoing improvements to the library.

On a positive note, OpenSkill does indeed support time decay, an important aspect of
maintaining an accurate skill rating system. Over time, a player's skill can decrease due to
inactivity; our library allows users to adjust the sigma value accordingly. This feature ensures
that our library maintains its adaptability and relevance even when faced with variable player
engagement levels.

Despite these limitations, our OpenSkill library remains a powerful tool for video game
developers and researchers tasked with competently evaluating player skills. It addresses several
long-standing issues encountered in multiplayer video game ranking systems. By continuously
seeking out improvements and refining our approach, we hope to make OpenSkill an ever more
effective and flexible resource in the world of online gaming.

Related Packages

This project was originally a direct port of the openskill.js project (Busby, 2023) from Javascript
to Python. However, we have deviated slightly from their implementation in that we focus more
on Python-specific features, and thorough documentation of every object. All documented
objects have the mathematical formulas from their respective papers included for easier
inspection of code. We also provide an easy way to customize all the constants used in any
model very easily. There are also published ports of OpenSkill in Elixir (Busby, 2020), Kotlin
(Brezina, 2022) and Lua (GitHub - Bstummer/Openskill.lua — Github.com, 2022) on GitHub.

When comparing our OpenSkill to similar packages like that of Lee's TrueSkill implementation,
we also provide support for PyPy 3, which uses a Just-In-Time compiler as opposed to the
standard CPython implementation. We also support strict typing of objects, to enable auto-
completion in your Integrated Development Environments (IDEs). Our development workflow
also requires a test coverage of 100% for any code to be merged. This serves as a starting
point to prevent erroneous math from making it into the library.

Acknowledgements

We extend our sincere gratitude to Philihp Busby and the openskill.js project for their valuable
contributions without which this project would not have been possible. Additionally, their
inputs and contributions to the prediction methods, have significantly enhanced its speed and
efficiency. Special acknowledgment also goes to Jas Laferriere for their critical contribution of
the additive dynamics factor. Your collective efforts have been instrumental in improving our
work.

References

Aeschbach, L. F., Kayser, D., Berbert De Castro Hiisler, A., Opwis, K., & Briihlmann, F.
(2023). The psychology of esports players' ELO hell: Motivated bias in league of legends

Joshy. (2024). OpenSkill: A faster asymmetric multi-team, multiplayer rating system. Journal of Open Source Software, 9(93), 5901. https: 4

//doi.org/10.21105/joss.05901.

https://doi.org/10.21105/joss.05901
https://doi.org/10.21105/joss.05901

SS

The Journal of Open Source Software

and its impact on players' overestimation of skill. Computers in Human Behavior, 147,
107828. https://doi.org/10.1016/j.chb.2023.107828

Bradley, R. A., & Terry, M. E. (1952). Rank Analysis of incomplete block designs: The method
of paired comparisons. Biometrika, 39(3-4), 324-345. https://doi.org/10.1093/biomet/39.
3-4.324

Brezina, J. (2022). GitHub - brezinajn/openskill.kt — github.com. https://github.com/
brezinajn/openskill kt.

Busby, P. (2020). GitHub - philihp/openskill.ex: Elixir implementation of Weng-Lin Bayesian
ranking, a better, license-free alternative to TrueSkill — github.com. https://github.com/
philihp/openskill.ex.

Busby, P. (2023). A faster, open-license alternative to microsoft TrueSkill. In GitHub.
https://github.com/philihp/openskill.js

Elo, A. E. (1978). The rating of chessplayers, past and present. Arco Pub.
ISBN: 9780668047210

GitHub - bstummer/openskill.lua — github.com. (2022). https://github.com/bstummer/
openskill.lua.

Glickman, M. E. (2001). Dynamic paired comparison models with stochastic variances. Journal
of Applied Statistics, 28(6), 673-689. https://doi.org/10.1080/02664760120059219

Guiver, J., & Snelson, E. (2009). Bayesian inference for plackett-luce ranking models. Pro-
ceedings of the 26th Annual International Conference on Machine Learning, 377-384.
https://doi.org/10.1145/1553374.1553423

Herbrich, R., & Graepel, T. (2006). TrueSkill(TM): A Bayesian skill rating sys-
tem (MSR-TR-2006-80). https://www.microsoft.com/en-us/research/publication/
trueskilltm-a-bayesian-skill-rating-system-2/

Joshy, V. (2023). OverWatch match data (Version 1.0.0) [Data set]. Zenodo. https:
//doi.org/10.5281 /zenodo. 10359600

Lee, H. (2018). An implementation of the TrueSkill rating system for python. In sublee/trueskill:
An implementation of the TrueSkill rating system for Python. https://github.com/sublee/
trueskill

Rico, Y. G. (2022). Her ranking is a 10 but her skill rating says... In The Analyst. Opta
Analyst. https://theanalyst.com/eu/2022/08/true-tennis-skill-ratings/

Suarez, J., Du, Y., Isola, P., & Mordatch, I. (2019). Neural MMO: A massively multiagent
game environment for training and evaluating intelligent agents. https://arxiv.org/abs/
1903.00784

Webber, W., Moffat, A., & Zobel, J. (2010). A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst., 28(4). https://doi.org/10.1145/1852102.1852106

Weng, R. C., & Lin, C.-J. (2011). A Bayesian approximation method for online ranking. Journal
of Machine Learning Research, 12(9), 267-300. http://jmlr.org/papers/v12/wenglla.html

Joshy. (2024). OpenSkill: A faster asymmetric multi-team, multiplayer rating system. Journal of Open Source Software, 9(93), 5901. https: 5

//doi.org/10.21105 /joss.05901.

https://doi.org/10.1016/j.chb.2023.107828
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://github.com/brezinajn/openskill.kt
https://github.com/brezinajn/openskill.kt
https://github.com/philihp/openskill.ex
https://github.com/philihp/openskill.ex
https://github.com/philihp/openskill.js
https://github.com/bstummer/openskill.lua
https://github.com/bstummer/openskill.lua
https://doi.org/10.1080/02664760120059219
https://doi.org/10.1145/1553374.1553423
https://www.microsoft.com/en-us/research/publication/trueskilltm-a-bayesian-skill-rating-system-2/
https://www.microsoft.com/en-us/research/publication/trueskilltm-a-bayesian-skill-rating-system-2/
https://doi.org/10.5281/zenodo.10359600
https://doi.org/10.5281/zenodo.10359600
https://github.com/sublee/trueskill
https://github.com/sublee/trueskill
https://theanalyst.com/eu/2022/08/true-tennis-skill-ratings/
https://arxiv.org/abs/1903.00784
https://arxiv.org/abs/1903.00784
https://doi.org/10.1145/1852102.1852106
http://jmlr.org/papers/v12/weng11a.html
https://doi.org/10.21105/joss.05901
https://doi.org/10.21105/joss.05901

	Summary
	Statement of need
	Usage
	Benchmarks
	Discussion
	Related Packages
	Acknowledgements
	References

