
Automatic Computation for Robot Design (ACRoD):
A Python package for numerical calculation of
Jacobian of a robot at a given configuration around a
specified end-effector point
Akkarapakam Suneesh Jacob 1*¶ and Rituparna Datta 2*

1 Indian Institute of Technology Kanpur, Kanpur, India. 2 Capgemini Technological Services India
Limited, Bengaluru, India. ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05927

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @gfadini
• @CameronDevine
• @JHartzer

Submitted: 24 May 2023
Published: 21 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Jacobian of a robot refers to the matrix that linearly maps the velocity components of
the end-effector and the velocities at the actuated joints. The Jacobian is extensively used
in dimensional synthesis for Jacobian-based optimal performances of robotic manipulators, in
which the optimal dimensional parameters of robots are computed. Determination of accurate
mobility (Yang et al., 2008) of planar and spatial mechanisms can also be performed by using
Jacobian in cases where Chebychev–Grübler–Kutzbach criterion cannot accurately determine
the mobility (Gogu, 2005). As a result, Jacobian is a significant part for both kinematic analysis,
dimensional synthesis and mobility determination of a mechanism. Hence, the formulation
of Jacobian has its key importance in the literature and in the application of performance
optimisation along with mobility computation. Formulation of Jacobian for serial manipulators
can be computed easily, however, it is increasingly complicated to formulate Jacobian for
parallel manipulators due to the existence of passive joint velocities and the nature in which
these are related to active joint velocities. Several studies (Altuzarra et al., 2006; Dutre et al.,
1997; D. Kim et al., 2000; S.-G. Kim & Ryu, 2003) exist for formulation of parallel manipulators
but all these studies are dependent on human inspection at some level. Several open source
software packages are also available for Jacobian formulation (Baumgärtner & Miller, 2022;
Lee et al., 2018; Nadeau, 2019; Owan et al., 2018), but either their application is limited
to serial manipulators, they require human intervention, or they are part of computationally
expensive simulations. For example, TriP (Baumgärtner & Miller, 2022) does facilitate Jacobian
computation with closed-loop chains in the manipulator structure, however, as obvious from
the tripedal robot example in the documentary, human inspection is apparently required to
appropriately join the legs of the robot. To alleviate the drawback of the requirement of human
inspection, the present research aims to formulate Jacobian that is required for dimensional
synthesis for optimal performance around a single point that can be used for any non-redundant
manipulator without any dependency on human inspection. Jacob and Dasgupta (Jacob &
Dasgupta, 2022) used a systematic method as a tool to formulate Jacobian matrices for several
manipulators in bulk for performance optimisation around a given task point. However, several
steps in that algorithm are not totally computerised but rather human-intervention-dependent.
Moreover, it can be applicable only with four types of joints. The current paper extends their
method to present a fully computerisable Jacobian formulation algorithm that is applicable for
general non-redundant planar and spatial manipulators of any topological structure of seven
types of joints, namely revolute, prismatic, cylindrical, spherical, universal, helical and plane
joints. Based on this extended method, the Python package Automatic Computation for

Robot Design (ACRoD) is developed by the authors. ACRoD provides a Python-based package
for generating functions required to compute the Jacobian at a given configuration for a

Jacob, & Datta. (2024). Automatic Computation for Robot Design (ACRoD): A Python package for numerical calculation of Jacobian of a robot
at a given configuration around a specified end-effector point. Journal of Open Source Software, 9(95), 5927. https://doi.org/10.21105/joss.05927.

1

https://orcid.org/0000-0002-9855-9368
https://orcid.org/0000-0003-3816-2438
https://doi.org/10.21105/joss.05927
https://github.com/openjournals/joss-reviews/issues/5927
https://github.com/suneeshjacob/ACRoD
https://doi.org/10.5281/zenodo.10819242
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/gfadini
https://github.com/CameronDevine
https://github.com/JHartzer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05927


given end-effector point, merely from the simple topological information of the robot in a
fully automated manner. This can be directly used in optimisation process to derive optimal
dimensions of the robot for optimal performance around a given end-effector point, thereby
avoiding many tedious steps in manual formulation, especially when a comparison study is
performed on multiple manipulators in bulk (Jacob & Dasgupta, 2022). ACRoD uses NumPy
(Harris et al., 2020) and SymPy (Meurer et al., 2017) packages to generate the functions for
Jacobian, which can be directly used in optimisation process to find the optimal dimensional
parameters of the robot.

Statement of need
For a manipulator of a given topology, designing the dimensions based on optimising Jacobian-
based performance parameters (such as manipulability index and condition number (Patel &
Sobh, 2015)) around a given end-effector point would require only the topological information
for the formulation of Jacobian, as every other step can be automated. Formulation of Jacobian
for parallel manipulators and serial-parallel hybrid manipulators are non-trivial, although all
the steps of Jacobian formulation even in those cases would have to stem from the mere
information of topology of the robot. ACRoD automates the non-trivial formulation of Jacobian
systematically. It uses a matrix-based representation of the topology of the robotic manipulator
(referred to here as the robot-topology matrix, of which more information is provided here)
which is a modified version of the graph adjacency matrix representation (Jacob et al., 2022) of
robotic manipulators. This Jacobian formulation can be used to generate numerical Jacobian
matrices with a few random configurations, from which the singular values can be calculated
which can confirm the Degree of Freedom (DoF). In other words, the DoF of a given robot
topology for a given base link and a given end-effector link can be verified by using this Jacobian
function even in cases where Chebychev–Grübler–Kutzbach criterion fails to verify. This can be
useful in mechanism synthesis to accurately verify the mobility of a given manipulator directly
from its robot-topology matrix by using the method shown in Yang et al.’s paper (Yang et
al., 2008). Even though the repository does not include scripts for computing optimisation or
performance metrics for dimensional synthesis or for computing the validity of DOF, it does
include scripts for computation of Jacobian which is an essential part for these analyses.

Method
The topology of a valid robot (with a single base-link and a single end-effector link and without
non-contributing chains) is to be specified using robot-topology matrix in NumPy matrix
format. The Jacobian class object takes this robot-topology matrix as input argument and
generates functions that are required to compute Jacobian. As byproducts, the Jacobian
function generation produces the symbolic matrices, the set of independent paths, etc., the
sets of active joint velocities and passive joint velocities, etc., which can be accessed from
the attributes of the Jacobian class object. More technical details on formulation of Jacobian
(along with appropriate algorithms) can be found here, and the notations and the nomenclature
are explained here in detail. The robot-topology matrix representation is explained here in
detail. Jacobian formulation for three robot examples, namely the 3R planar serial robot, a
4R-4P planar serial-parallel hybrid robot and an RSSR-SSR spatial parallel robot, are explained
in detail in the corresponding hyperlinks.

Comparison with other Jacobian-computation software packages
TriP (Baumgärtner & Miller, 2022) is a software that is developed to address kinematics of
hybrid linkages. However, it is evident from the tripedal example that human inspection is
required to develop the model for each leg of tripedal robot. DART (Lee et al., 2018) uses
biped robot (which can be seen as involving a closed-loop mechanism) in the examples, however
it is imported from .sktl file rather than modelling a customised closed-loop robot from scratch.

Jacob, & Datta. (2024). Automatic Computation for Robot Design (ACRoD): A Python package for numerical calculation of Jacobian of a robot
at a given configuration around a specified end-effector point. Journal of Open Source Software, 9(95), 5927. https://doi.org/10.21105/joss.05927.

2

https://github.com/suneeshjacob/ACRoD/blob/main/misc/Robot_Topology_Matrix.md
https://github.com/suneeshjacob/ACRoD/blob/main/misc/Mathematics%20behind%20Jacobian%20formulation.md
https://github.com/suneeshjacob/ACRoD/blob/main/misc/Notation_and_Nomenclature.md
https://github.com/suneeshjacob/ACRoD/blob/main/misc/Robot_Topology_Matrix.md
https://github.com/suneeshjacob/ACRoD/blob/main/examples/Jacobian/maths/3R_serial_robot.md
https://github.com/suneeshjacob/ACRoD/blob/main/examples/Jacobian/maths/4R4P_parallel_robot.md
https://github.com/suneeshjacob/ACRoD/blob/main/examples/Jacobian/maths/4R4P_parallel_robot.md
https://github.com/suneeshjacob/ACRoD/blob/main/examples/Jacobian/maths/RSSR-SSR_serial-parallel_hybrid_robot.md
https://doi.org/10.21105/joss.05927


Even though C++ based software packages such as DART (Lee et al., 2018), CoreRobotics
(Owan et al., 2018) and pinocchio (Carpentier et al., 2019) may facilitate closed-loop linkages,
apparently no documentation is provided for modelling closed-loop linkages. Furthermore, all
these software (TriP, DART, CoreRobotics, pinocchio) apparently require human intervention
to build a robot of a given topology. Even though some of them support importing models from
URDF files, URDF has the limitation of “inability to model parallel linkages and closed-chain
systems” (Tola & Corke, 2023), and furthermore preparing a URDF file (or similar file) of
a robot from its mere topological information also requires human intervention. Pybotics
provides automatic modelling of robot from the mere information of DH parameters, however it
is apparently limited to serial manipulators. ACRoD addresses this issue of human intervention
by automatically generating functions required to compute Jacobian for a given end-effector
point. A comparison of ACRoD with other software packages is shown in the table below.

Soft-
ware

Base
Lan-

guage

Closed-
loop

Linkages

Automation Level
From Mere
Topology Primary focus

TriP
(2022)

Python yes H* Kinematics of Hybrid Linkages

Py-
botics
(2019)

Python no A Kinematics, Dynamics, Trajectory
Generations and Calibration of Serial
Robots

DART
(2018)

C++ X H* Kinematic and Dynamic Applications of
Robotics

CoreR-
obotics
(2018)

C++ X H Computational Algorithms for Real Time
Robot Control

pinoc-
chio
(2019)

C++ X H* Analytical Derivatives for Kinematics
and Dynamics, Features for Control,
Planning and Simulation

ACRoD
(2023)

Python yes yes Dimensional Synthesis

• X = possible but neither documentation is provided nor an example is provided.
• * = Accepts importing models from URDF files, etc.
• H = Human intervention required to build the robot.
• A = Automatically buildable from its DH parameters.

Acknowledgements
This paper is an extended version of the Jacobian formulation presented in previous work
(Jacob & Dasgupta, 2022) co-authored by Dr. Bhaskar Dasgupta, whom the authors would like
to acknowledge for whatever credits applicable. However, the authors would like to clarify that
the technical extension of theory and the whole software are developed solely by the authors of
the current paper.

References
Altuzarra, O., Salgado, O., Petuya, V., & Hernández, A. (2006). Point-based jacobian

formulation for computational kinematics of manipulators. Mechanism and Machine
Theory, 41(12), 1407–1423. https://doi.org/10.1016/j.mechmachtheory.2006.01.011

Baumgärtner, J., & Miller, T. (2022). TriP: A python package for the kinematic modeling
of serial-parallel hybrid robots. Journal of Open Source Software, 7(71), 3967. https:
//doi.org/10.21105/joss.03967

Jacob, & Datta. (2024). Automatic Computation for Robot Design (ACRoD): A Python package for numerical calculation of Jacobian of a robot
at a given configuration around a specified end-effector point. Journal of Open Source Software, 9(95), 5927. https://doi.org/10.21105/joss.05927.

3

https://doi.org/10.1016/j.mechmachtheory.2006.01.011
https://doi.org/10.21105/joss.03967
https://doi.org/10.21105/joss.03967
https://doi.org/10.21105/joss.05927


Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., & Mansard,
N. (2019). The pinocchio c++ library : A fast and flexible implementation of rigid
body dynamics algorithms and their analytical derivatives. 2019 IEEE/SICE International
Symposium on System Integration (SII), 614–619. https://doi.org/10.1109/SII.2019.
8700380

Dutre, S., Bruyninckx, H., & De Schutter, J. (1997). The analytical jacobian and its derivative
for a parallel manipulator. Proceedings of International Conference on Robotics and
Automation, 4, 2961–2966 vol.4. https://doi.org/10.1109/robot.1997.606737

Gogu, G. (2005). Chebychev–Grübler–Kutzbach’s criterion for mobility calculation of multi-loop
mechanisms revisited via theory of linear transformations. European Journal of Mechanics -
A/Solids, 24(3), 427–441. https://doi.org/10.1016/j.euromechsol.2004.12.003

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Jacob, A. S., & Dasgupta, B. (2022). Dimensional synthesis of spatial manipulators for velocity
and force transmission for operation around a specified task point. https://doi.org/10.
48550/arXiv.2210.04446

Jacob, A. S., Dasgupta, B., & Datta, R. (2022). Enumeration of spatial manipulators by using
the concept of adjacency matrix. arXiv. https://doi.org/10.48550/arXiv.2210.03327

Kim, D., Chung, W., & Youm, Y. (2000). Analytic jacobian of in-parallel manipulators.
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065), 3, 2376–2381 vol.3.
https://doi.org/10.1109/robot.2000.846382

Kim, S.-G., & Ryu, J. (2003). New dimensionally homogeneous jacobian matrix formulation
by three end-effector points for optimal design of parallel manipulators. IEEE Transactions
on Robotics and Automation, 19(4), 731–736. https://doi.org/10.1109/tra.2003.814496

Lee, J., Grey, M. X., Ha, S., Kunz, T., Jain, S., Ye, Y., Srinivasa, S. S., Stilman, M., & Liu,
C. K. (2018). DART: Dynamic animation and robotics toolkit. Journal of Open Source
Software, 3(22), 500. https://doi.org/10.21105/joss.00500

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., … Scopatz, A.
(2017). SymPy: Symbolic computing in python. PeerJ Computer Science, 3, e103.
https://doi.org/10.7717/peerj-cs.103

Nadeau, N. (2019). Pybotics: Python toolbox for robotics. Journal of Open Source Software,
4(41), 1738. https://doi.org/10.21105/joss.01738

Owan, P., Devine, C., & Piaskowy, W. T. (2018). CoreRobotics: An object-oriented c++
library with cross-language wrappers for cross-platform robot control. Journal of Open
Source Software, 3(22), 489. https://doi.org/10.21105/joss.00489

Patel, S., & Sobh, T. (2015). Manipulator performance measures-a comprehensive literature
survey. Journal of Intelligent & Robotic Systems, 77(3), 547–570. https://doi.org/10.
1007/s10846-014-0024-y

Tola, D., & Corke, P. (2023). Understanding URDF: A survey based on user experience. 2023
IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–7.
https://doi.org/10.1109/CASE56687.2023.10260660

Jacob, & Datta. (2024). Automatic Computation for Robot Design (ACRoD): A Python package for numerical calculation of Jacobian of a robot
at a given configuration around a specified end-effector point. Journal of Open Source Software, 9(95), 5927. https://doi.org/10.21105/joss.05927.

4

https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/robot.1997.606737
https://doi.org/10.1016/j.euromechsol.2004.12.003
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.2210.04446
https://doi.org/10.48550/arXiv.2210.04446
https://doi.org/10.48550/arXiv.2210.03327
https://doi.org/10.1109/robot.2000.846382
https://doi.org/10.1109/tra.2003.814496
https://doi.org/10.21105/joss.00500
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.21105/joss.01738
https://doi.org/10.21105/joss.00489
https://doi.org/10.1007/s10846-014-0024-y
https://doi.org/10.1007/s10846-014-0024-y
https://doi.org/10.1109/CASE56687.2023.10260660
https://doi.org/10.21105/joss.05927


Yang, D.-C., Xiong, J., & Yang, X.-D. (2008). A simple method to calculate mobility with
jacobian. Mechanism and Machine Theory, 43(9), 1175–1185. https://doi.org/10.1016/j.
mechmachtheory.2007.08.001

Jacob, & Datta. (2024). Automatic Computation for Robot Design (ACRoD): A Python package for numerical calculation of Jacobian of a robot
at a given configuration around a specified end-effector point. Journal of Open Source Software, 9(95), 5927. https://doi.org/10.21105/joss.05927.

5

https://doi.org/10.1016/j.mechmachtheory.2007.08.001
https://doi.org/10.1016/j.mechmachtheory.2007.08.001
https://doi.org/10.21105/joss.05927

	Summary
	Statement of need
	Method
	Comparison with other Jacobian-computation software packages

	Acknowledgements
	References

