
Raphtory: The temporal graph engine for Rust and
Python
Ben Steer 1,4, Naomi A. Arnold 3¶, Cheick Tidiane Ba 6,4, Renaud
Lambiotte 2,1,8, Haaroon Yousaf 1, Lucas Jeub 1, Fabian Murariu5,
Shivam Kapoor1, Pedro Rico 1, Rachel Chan1, Louis Chan1, James Alford1,
Richard G. Clegg 4, Felix Cuadrado 7,4, Matthew Russell Barnes4, Peijie
Zhong4, John Pougué-Biyong 2, and Alhamza Alnaimi1

1 Pometry, United Kingdom 2 Mathematical Institute, University of Oxford, United Kingdom 3 Networks
Science Institute, Northeastern University London, United Kingdom 4 School of Electronic Engineering
and Computer Science, Queen Mary University of London, United Kingdom 5 32 Bytes Software, United
Kingdom 6 University of Milan, Italy 7 Universidad Politécnica de Madrid, Spain 8 Alan Turing Institute,
United Kingdom ¶ Corresponding author

DOI: 10.21105/joss.05940

Software
• Review
• Repository
• Archive

Editor: Luiz Irber
Reviewers:

• @abhishektiwari
• @arashbm

Submitted: 26 June 2023
Published: 27 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Raphtory is a platform for building and analysing temporal networks. The library includes
methods for creating networks from a variety of data sources; algorithms to explore their
structure and evolution; and an extensible GraphQL server for deployment of applications built
on top. Raphtory’s core engine is built in Rust, for efficiency, with Python interfaces, for ease
of use. Raphtory is developed by network scientists, with a background in Physics, Applied
Mathematics, Engineering and Computer Science, for use across academia and industry.

Statement of need
Networks are at the core of data science solutions in a variety of domains, including computer
science, computational social science, and the life sciences (Newman, 2018). Networks are a
powerful language focusing on the connectivity of systems, and offer a rich toolbox to extract
greater understanding from data. Several network analysis tools exist, including NetworkX
(Hagberg et al., 2008), graph-tool (Peixoto, 2014) and igraph (Csardi et al., 2006), and are
freely accessible to scientists, practitioners and data miners.

However, with abundant cheap storage and tools for logging every event which occurs in an
ecosystem, datasets have become increasingly rich, combining different types of information
that cannot be incorporated in a standard network model (Lambiotte et al., 2019). In particular,
the temporal nature of many complex systems has led to the emergence of the field of temporal
networks, with its own models and algorithms (Holme & Saramäki, 2012; Masuda & Lambiotte,
2016).

Unfortunately, despite active academic research in the last decade, no efficient, generalised and
production-ready system has been developed to explore the temporal dimension of networks.
To support practitioners who wish to exploit both the structure and dynamics of their data,
we have developed Raphtory.

Steer et al. (2024). Raphtory: The temporal graph engine for Rust and Python. Journal of Open Source Software, 9(95), 5940. https:
//doi.org/10.21105/joss.05940.

1

https://orcid.org/0000-0001-9446-5690
https://orcid.org/0000-0001-6396-4788
https://orcid.org/0000-0002-4035-7464
https://orcid.org/0000-0002-0583-4595
https://orcid.org/0000-0001-5098-5811
https://orcid.org/0000-0001-8941-9227
https://orcid.org/0000-0002-4698-8435
https://orcid.org/0000-0001-7241-6679
https://orcid.org/0000-0002-5745-1609
https://orcid.org/0000-0002-6582-193X
https://doi.org/10.21105/joss.05940
https://github.com/openjournals/joss-reviews/issues/5940
https://github.com/Pometry/Raphtory
https://doi.org/10.5281/zenodo.10530613
https://luizirber.org
https://orcid.org/0000-0003-4371-9659
https://github.com/abhishektiwari
https://github.com/arashbm
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05940
https://doi.org/10.21105/joss.05940


Related Software
Besides the aforementioned packages, few open access tools have been developed for the
mining of temporal networks, with the existing solutions focusing on specific sub-problems
within the space. Those which have attempted to generalise to all temporal network analysis
are either actively under development, but too preliminary to use in production, or have been
abandoned due to lack of funding or changing research goals.

As examples of these three categories: Pathpy is a Python package for the analysis of time series
data on networks, but focuses on extracting and analysing time-respecting paths (Hackl et al.,
2021). Similarly, DyNetX (Rossetti et al., 2023), a pure Python library relying on networkX,
focuses on temporal slicing and the computation of time-respecting paths. The recently released
Reticula offers a range of methods developed in C++ with a Python interface (Badie-Modiri
& Kivelä, 2023). Phasik (Lucas, Townsend-Teague, et al., 2023; Lucas, Morris, et al., 2023),
written in Python, focuses on inferring phases from temporal network data. EvolvingGraphs.jl
(Zhang, 2015), RecallGraph (Mukhopadhyay, Accessed 19-06-2023) and Chronograph (Erb et
al., 2017) all saw significant work before development was halted indefinitely.

Raphtory is a valuable addition to this ecosystem for the following reasons. Originally developed
in Scala (Steer et al., 2020), its current core is entirely written in Rust. This is to ensure fast
and memory-efficient computation that a pure Python implementation could not achieve, and
to handle the sheer volume of temporal network data, which often dwarfs that of an equivalent
static network.

The library provides an expressive Python interface for interoperability with other data science
tools, as well as simpler and more maintainable code. In addition, the library is built with a
focus on scalability, as it relies on efficient data structures that can be used to extract different
views of large temporal graphs. This avoids the creation of multiple graph objects that is not
feasible with large datasets. The use of these new features is supported by well-documented
APIs and tutorials, guiding the user from data loading through to analysis.

Overview
The core Raphtory model consists of a base temporal graph which maintains a chronological
log of all changes to its structure and property values over time. A graph can be created using
simple functions for adding/removing vertices and edges at different time points, as well as
updating their properties. Alternatively, a graph can be generated through in-built loaders for
common data sources/formats (Example 1).

Once a graph has been created, a user may generate ‘graph views’ which set some structural or
temporal constraints through which the underlying graph may be observed. Graph views can be
generated programmatically over a desired time range (windows), over sets of nodes which pass
some user-defined criteria (subgraphs), or over a subset of layers if the graph is multilayered.
Additionally, the views can leverage event durations and support various semantics for deletions.

To reduce memory footprint, graph views are only materialised upon access. This allows a user
to maintain thousands of different perspectives of their graph simultaneously, which can be
explored and compared through the application of graph algorithms and metrics (Example 2).
Furthermore, Raphtory provides extensions for automatic null model generation and exporting
of views to other graph libraries such as NetworkX.

Raphtory includes fast and scalable implementations of algorithms for temporal network mining
such as temporal motifs (Example 3) and temporal reachability. In addition, it exposes its
internal API for implementing algorithms in Rust, and surfacing them in Python.

Finally, Raphtory is built with a focus on ease of use and can be installed using standard
Python and Rust package managers. Once installed it can be integrated within an analysis

Steer et al. (2024). Raphtory: The temporal graph engine for Rust and Python. Journal of Open Source Software, 9(95), 5940. https:
//doi.org/10.21105/joss.05940.

2

https://doi.org/10.21105/joss.05940
https://doi.org/10.21105/joss.05940


pipeline or run standalone as a GraphQL service.

Caption. First line (Example 1): In a temporal network, edges are dynamical entities connecting
pairs of nodes. Second line (Example 2): Generation of a sequence of graph views at a given
time resolution and on selected layers, to run standard network algorithms, here Pagerank.
Third line (Example 3): Raphtory offers rapid implementations of algorithms specifically
designed for temporal networks, here finding significant temporal motifs (Paranjape et al.,
2017).

Projects using Raphtory
Raphtory has proved an invaluable resource in industrial and academic projects, for instance
to characterise the time evolution of the fringe social network Gab (Arnold et al., 2021),

Steer et al. (2024). Raphtory: The temporal graph engine for Rust and Python. Journal of Open Source Software, 9(95), 5940. https:
//doi.org/10.21105/joss.05940.

3

https://doi.org/10.21105/joss.05940
https://doi.org/10.21105/joss.05940


transactions of users of a dark web marketplace Alphabay using temporal motifs (Paranjape
et al., 2017) or anomalous patterns of activity in NFT trades (Yousaf et al., 2023). The
library has recently been significantly rewritten, and we expect that with its new functionalities,
efficiency and ease of use, it will become an essential part of the network science community.

References
Arnold, N. A., Steer, B., Hafnaoui, I., Parada G, H. A., Mondragón, R. J., Cuadrado, F., &

Clegg, R. G. (2021). Moving with the times: Investigating the alt-right network Gab with
temporal interaction graphs. Proceedings of the ACM on Human-Computer Interaction,
CSCW. https://doi.org/10.1145/3479591

Badie-Modiri, A., & Kivelä, M. (2023). Reticula: A temporal network and hypergraph analysis
software package. SoftwareX, 21, 101301. https://doi.org/10.1016/j.softx.2022.101301

Csardi, G., Nepusz, T., & others. (2006). The igraph software package for complex network
research. InterJournal, Complex Systems, 1695(5), 1–9. https://doi.org/10.5281/zenodo.
7682609

Erb, B., Meißner, D., Pietron, J., & Kargl, F. (2017). Chronograph: A distributed processing
platform for online and batch computations on event-sourced graphs. Proceedings of
the 11th ACM International Conference on Distributed and Event-Based Systems. https:
//doi.org/10.1145/3093742.3093913

Hackl, J., Scholtes, I., Petrović, L. V., Perri, V., Verginer, L., & Gote, C. (2021). Analysis and
visualisation of time series data on networks with pathpy. Companion Proceedings of the
Web Conference 2021, 530–532. https://doi.org/10.1145/3442442.3452052

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using NetworkX. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States); https://www.osti.gov/biblio/960616.

Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.
https://doi.org/10.1007/978-3-642-36461-7

Lambiotte, R., Rosvall, M., & Scholtes, I. (2019). From networks to optimal higher-order
models of complex systems. Nature Physics, 15(4), 313–320. https://doi.org/10.1038/
s41567-019-0459-y

Lucas, M., Morris, A., Townsend-Teague, A., Tichit, L., Habermann, B., & Barrat, A. (2023).
Inferring cell cycle phases from a partially temporal network of protein interactions. Cell
Reports Methods, 3(2). https://doi.org/10.1101/2021.03.26.437187

Lucas, M., Townsend-Teague, A., Neri, M., Poetto, S., Morris, A., Habermann, B., & Tichit, L.
(2023). Phasik: A python package to identify system states in partially temporal networks.
Journal of Open Source Software, 8(91), 5872. https://doi.org/10.21105/joss.05872

Masuda, N., & Lambiotte, R. (2016). A guide to temporal networks. World Scientific.
https://doi.org/10.1142/q0033

Mukhopadhyay, A. (Accessed 19-06-2023). RecallGraph. https://github.com/RecallGraph/
RecallGraph.

Newman, M. (2018). Networks. Oxford University Press. https://doi.org/10.1093/oso/
9780198805090.001.0001

Paranjape, A., Benson, A. R., & Leskovec, J. (2017). Motifs in temporal networks. Proceedings
of the Tenth ACM International Conference on Web Search and Data Mining, 601–610.
https://doi.org/10.1145/3018661.3018731

Steer et al. (2024). Raphtory: The temporal graph engine for Rust and Python. Journal of Open Source Software, 9(95), 5940. https:
//doi.org/10.21105/joss.05940.

4

https://doi.org/10.1145/3479591
https://doi.org/10.1016/j.softx.2022.101301
https://doi.org/10.5281/zenodo.7682609
https://doi.org/10.5281/zenodo.7682609
https://doi.org/10.1145/3093742.3093913
https://doi.org/10.1145/3093742.3093913
https://doi.org/10.1145/3442442.3452052
https://www.osti.gov/biblio/960616
https://doi.org/10.1007/978-3-642-36461-7
https://doi.org/10.1038/s41567-019-0459-y
https://doi.org/10.1038/s41567-019-0459-y
https://doi.org/10.1101/2021.03.26.437187
https://doi.org/10.21105/joss.05872
https://doi.org/10.1142/q0033
https://github.com/RecallGraph/RecallGraph
https://github.com/RecallGraph/RecallGraph
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.21105/joss.05940
https://doi.org/10.21105/joss.05940


Peixoto, T. P. (2014). The graph-tool python library. Figshare. https://doi.org/10.6084/m9.
figshare.1164194.v14

Rossetti, G., Hoeven, E. ter, Norman, U., Jorquera, D., Dormán, H., & Dorner, M. (2023).
GiulioRossetti/dynetx: v0.3.2 (Version v0.3.2b). Zenodo. https://doi.org/10.5281/zenodo.
8009585

Steer, B., Cuadrado, F., & Clegg, R. (2020). Raphtory: Streaming analysis of distributed
temporal graphs. Future Generation Computer Systems, 102, 453–464. https://doi.org/10.
1016/j.future.2019.08.022

Yousaf, H., Arnold, N. A., Lambiotte, R., LaRock, T., Clegg, R. G., Zhong, P., Alnaimi,
A., & Steer, B. (2023). Non-Markovian paths and cycles in NFT trades. arXiv Preprint
arXiv:2303.11181. https://doi.org/10.48550/arXiv.2303.11181

Zhang, W. (2015). Dynamic network analysis in Julia. https://eprints.maths.manchester.ac.
uk/2376/

Steer et al. (2024). Raphtory: The temporal graph engine for Rust and Python. Journal of Open Source Software, 9(95), 5940. https:
//doi.org/10.21105/joss.05940.

5

https://doi.org/10.6084/m9.figshare.1164194.v14
https://doi.org/10.6084/m9.figshare.1164194.v14
https://doi.org/10.5281/zenodo.8009585
https://doi.org/10.5281/zenodo.8009585
https://doi.org/10.1016/j.future.2019.08.022
https://doi.org/10.1016/j.future.2019.08.022
https://doi.org/10.48550/arXiv.2303.11181
https://eprints.maths.manchester.ac.uk/2376/
https://eprints.maths.manchester.ac.uk/2376/
https://doi.org/10.21105/joss.05940
https://doi.org/10.21105/joss.05940

	Summary
	Statement of need
	Related Software
	Overview
	Projects using Raphtory
	References

