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Summary
Raphtory is a platform for building and analysing temporal networks. The library includes
methods for creating networks from a variety of data sources; algorithms to explore their
structure and evolution; and an extensible GraphQL server for deployment of applications built
on top. Raphtory’s core engine is built in Rust, for efficiency, with Python interfaces, for ease
of use. Raphtory is developed by network scientists, with a background in Physics, Applied
Mathematics, Engineering and Computer Science, for use across academia and industry.

Statement of need
Networks are at the core of data science solutions in a variety of domains, including computer
science, computational social science, and the life sciences (Newman, 2018). Networks are a
powerful language focusing on the connectivity of systems, and offer a rich toolbox to extract
greater understanding from data. Several network analysis tools exist, including NetworkX
(Hagberg et al., 2008), graph-tool (Peixoto, 2014) and igraph (Csardi et al., 2006), and are
freely accessible to scientists, practitioners and data miners.

However, with abundant cheap storage and tools for logging every event which occurs in an
ecosystem, datasets have become increasingly rich, combining different types of information
that cannot be incorporated in a standard network model (Lambiotte et al., 2019). In particular,
the temporal nature of many complex systems has led to the emergence of the field of temporal
networks, with its own models and algorithms (Holme & Saramäki, 2012; Masuda & Lambiotte,
2016).

Unfortunately, despite active academic research in the last decade, no efficient, generalised and
production-ready system has been developed to explore the temporal dimension of networks.
To support practitioners who wish to exploit both the structure and dynamics of their data,
we have developed Raphtory.
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Related Software
Besides the aforementioned packages, few open access tools have been developed for the
mining of temporal networks, with the existing solutions focusing on specific sub-problems
within the space. Those which have attempted to generalise to all temporal network analysis
are either actively under development, but too preliminary to use in production, or have been
abandoned due to lack of funding or changing research goals.

As examples of these three categories: Pathpy is a Python package for the analysis of time series
data on networks, but focuses on extracting and analysing time-respecting paths (Hackl et al.,
2021). Similarly, DyNetX (Rossetti et al., 2023), a pure Python library relying on networkX,
focuses on temporal slicing and the computation of time-respecting paths. The recently released
Reticula offers a range of methods developed in C++ with a Python interface (Badie-Modiri
& Kivelä, 2023). Phasik (Lucas, Townsend-Teague, et al., 2023; Lucas, Morris, et al., 2023),
written in Python, focuses on inferring phases from temporal network data. EvolvingGraphs.jl
(Zhang, 2015), RecallGraph (Mukhopadhyay, Accessed 19-06-2023) and Chronograph (Erb et
al., 2017) all saw significant work before development was halted indefinitely.

Raphtory is a valuable addition to this ecosystem for the following reasons. Originally developed
in Scala (Steer et al., 2020), its current core is entirely written in Rust. This is to ensure fast
and memory-efficient computation that a pure Python implementation could not achieve, and
to handle the sheer volume of temporal network data, which often dwarfs that of an equivalent
static network.

The library provides an expressive Python interface for interoperability with other data science
tools, as well as simpler and more maintainable code. In addition, the library is built with a
focus on scalability, as it relies on efficient data structures that can be used to extract different
views of large temporal graphs. This avoids the creation of multiple graph objects that is not
feasible with large datasets. The use of these new features is supported by well-documented
APIs and tutorials, guiding the user from data loading through to analysis.

Overview
The core Raphtory model consists of a base temporal graph which maintains a chronological
log of all changes to its structure and property values over time. A graph can be created using
simple functions for adding/removing vertices and edges at different time points, as well as
updating their properties. Alternatively, a graph can be generated through in-built loaders for
common data sources/formats (Example 1).

Once a graph has been created, a user may generate ‘graph views’ which set some structural or
temporal constraints through which the underlying graph may be observed. Graph views can be
generated programmatically over a desired time range (windows), over sets of nodes which pass
some user-defined criteria (subgraphs), or over a subset of layers if the graph is multilayered.
Additionally, the views can leverage event durations and support various semantics for deletions.

To reduce memory footprint, graph views are only materialised upon access. This allows a user
to maintain thousands of different perspectives of their graph simultaneously, which can be
explored and compared through the application of graph algorithms and metrics (Example 2).
Furthermore, Raphtory provides extensions for automatic null model generation and exporting
of views to other graph libraries such as NetworkX.

Raphtory includes fast and scalable implementations of algorithms for temporal network mining
such as temporal motifs (Example 3) and temporal reachability. In addition, it exposes its
internal API for implementing algorithms in Rust, and surfacing them in Python.

Finally, Raphtory is built with a focus on ease of use and can be installed using standard
Python and Rust package managers. Once installed it can be integrated within an analysis
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pipeline or run standalone as a GraphQL service.

Caption. First line (Example 1): In a temporal network, edges are dynamical entities connecting
pairs of nodes. Second line (Example 2): Generation of a sequence of graph views at a given
time resolution and on selected layers, to run standard network algorithms, here Pagerank.
Third line (Example 3): Raphtory offers rapid implementations of algorithms specifically
designed for temporal networks, here finding significant temporal motifs (Paranjape et al.,
2017).

Projects using Raphtory
Raphtory has proved an invaluable resource in industrial and academic projects, for instance
to characterise the time evolution of the fringe social network Gab (Arnold et al., 2021),
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transactions of users of a dark web marketplace Alphabay using temporal motifs (Paranjape
et al., 2017) or anomalous patterns of activity in NFT trades (Yousaf et al., 2023). The
library has recently been significantly rewritten, and we expect that with its new functionalities,
efficiency and ease of use, it will become an essential part of the network science community.
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