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Statement of need
Point defects can often determine the properties of semiconductor and optoelectronic materials.
Due to the large simulation cell and the higher-cost density functionals required for defect
simulations, the computational cost of defect calculations is often orders of magnitude higher
than that of bulk calculations. As such, managing and curating the results of the defect
calculations generated by a single user has the potential to save a significant amount of
computational resources. Moreover, eventually building a high-quality, persistent defects
database will significantly reduce the computational cost of defect calculations for the entire
community.

Simulation of point defects is one of the most complex workflows in computational materials
science, involving extensive pre- and post-processing of the structural and electronic structure
data (Freysoldt et al., 2014). Multiple software packages exist to automate the simulation of
point defects including work from Broberg et al. (2018), Kumagai et al. (2021), Huang et al.
(2022), Arrigoni & Madsen (2021), Goyal et al. (2017), and Kavanagh et al. (2023); however,
no available code focuses on:

1. Integration of but not insistence on standardized high-throughput workflow frameworks
2. Building large, persistent databases of point defects that are extensible to new calculations

over time

Summary
Since the combinatorics of point defects in crystalline materials can be daunting, it is important
to have a software package that can be easily integrated into high-throughput workflows to
manage these complex calculations. However, most users of defect analysis packages will not
need to run thousands of calculations, so it is important to have code focused purely on the
defect analysis and relegate the high-throughput workflow aspect to a separate package. A
focus of the present package is also to provide a base library for the analysis of point defects
without invoking any high-throughput workflow frameworks. Even though this package was
designed with high-throughput in mind and developed alongside a high-throughput workflow
framework, it is not dependent on any particular workflow framework and can be used as a
standalone analysis package.

Additionally, a well-known problem in the simulation of point defects is the fact that current
structure optimization techniques can miss the ground state structure based on the initial
guess in a sizable minority of cases, so the ability to easily re-visit and re-optimize structures is
crucial to building a reliable database of point defects. Towards that end, we have developed a
Python package, pymatgen-analysis-defects, and integrated it with the popular atomate2
workflow framework to provide a complete set of tools for simulating, analyzing, and managing
the results of point defect calculations.
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Since the ability to revisit calculations is crucial to building a reliable database, but user tagging
of calculations is inconsistent, especially in a high-throughput context, we have codified a
structure-only definition of point defects that can be used to aggregate the results of multiple
calculations of the same defect. This allows for the creation of a database of point defects that
can be easily extended to new calculations over time. In addition to the focus on database
building, we have also implemented several tools for analyzing carrier recombination in defects,
these include:

1. Obtaining the chemical potential contribution to the defect formation energy without
explicit calculations of the competing phases

2. Obtaining the Freysoldt finite-size correction without user intervention
3. Calculation of the optical transition between states under the independent-particle

approximation
4. Calculation of the non-radiative recombination using the nonrad code (Turiansky et al.,

2021)

Details of the implementation and tutorials for using the different parts of the package are
provided at https://materialsproject.github.io/pymatgen-analysis-defects/intro.html.

Defect Definition
A core feature of pymatgen-analysis-defects is the ability to define point defects automati-
cally. While symmetry analysis on the atomic structure alone is usually enough to define the
distinct substitutional and vacancy defects, we found that the electronic charge density was
the most effective at placing the interstitial defect at symmetry-inequivalent positions. A basic
example of creating a full list of defects is shown below:

from pymatgen.analysis.defects.generators import generate_all_native_defects

from pymatgen.ext.matproj import MPRester

with MPRester() as mpr:

chgcar = mpr.get_charge_density_from_material_id("mp-804")

defects = []

for defect in generate_all_native_defects(chgcar):

print(defect)

defects.append(defect)

Ga Vacancy defect at site #0

N Vacancy defect at site #2

N subsitituted on the Ga site at at site #0

Ga subsitituted on the N site at at site #2

Ga intersitial site at [0.00,0.00,0.20]

Ga intersitial site at [0.35,0.65,0.69]

N intersitial site at [0.00,0.00,0.20]

N intersitial site at [0.35,0.65,0.69]

In the code above, we query the Materials Project database for the charge density object,
which contains information about the bulk structure, as well as the electronic charge density.
Using the generate_all_native_defects function, we can generate a list of all of the native
point defects for this structure.
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Figure 1: Defect generation.

Defect Simulation Workflow
A basic example of integration with the atomate2 workflow framework is provided below:

from atomate2.vasp.flows.defect import FormationEnergyMaker

from jobflow import Flow

from pymatgen.analysis.defects.generators import generate_all_native_defects

from pymatgen.ext.matproj import MPRester

with MPRester() as mpr:

chgcar = mpr.get_charge_density_from_material_id("mp-804")

maker = FormationEnergyMaker()

jobs = []

for defect in generate_all_native_defects(chgcar):

jobs.append(maker.make(defect))

flow = Flow(jobs)

The code above will generate a Flow object that contains all of the instructions to dynamically
create all of the required defect calculations, which can be sent to the job manager on an HPC
system.
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