
Opyrability: A Python package for process operability
analysis
Victor Alves1, San Dinh1,2, John R. Kitchin2, Vitor Gazzaneo1, Juan C.
Carrasco3, and Fernando V. Lima1

1 Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West
Virginia, USA 2 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA 3 Department of Chemical Engineering, Universidad de Concepción, Concepción,
Chile

DOI: 10.21105/joss.05966

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @gmxavier
• @mustafaalsalmi1999

Submitted: 12 September 2023
Published: 06 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
When designing a chemical process/plant, two main tasks naturally arise when considering the
processing of raw materials into value-added products such as chemicals or energy:

1. Process design decisions: Which decisions should be made with respect to the design vari-
ables of a given process, in a way that its overall objectives are achieved? (e.g., economic
profitability, constraints related to product purity/pollutant emissions, sustainability,
etc.).

2. Process control objectives: Which variables should be controlled, yielding the maximum
operability of the process? That is, can the process reach its maximum operational
capacity, given the ranges of the manipulated/input variables when subject to distur-
bances?

Historically, Tasks 1 and 2 have been performed sequentially: Engineers/practitioners would
come up with the design decisions, and only then the control objectives would be assessed.
Unfortunately, this can yield a process that is designed in a way that its operability capabilities
are hindered. In other words, because the control objectives were not considered early in the
design phase, the process itself might be not controllable or operable at all. To give some
perspective on how challenging this problem can be, there are reports dating back to the 1940s
from well-known authors in the process control field such as Ziegler and Nichols (Ziegler &
Nichols, 1943) mentioning the importance of interconnecting design and control.

Considering this, the need of quantifying achievability for a general nonlinear process naturally
arises. The underlying motivation of determining whether it would be possible to measure
the operability of a process to simultaneously achieve process design and control objectives
led Georgakis and coworkers (Georgakis et al., 2003; Lima & Georgakis, 2010; Subramanian
& Georgakis, 2005; Vinson & Georgakis, 2000) to formally define process operability and a
metric called the Operability Index (OI). The OI was conceptualized as a measure to quantify
achievability of nonlinear processes (Vinson & Georgakis, 2000), which was proven to be
independent of the control strategy and inventory control layer (Vinson & Georgakis, 2002).
In addition, it allows for the efficient ranking of competing designs and/or control structures
(Lima et al., 2010) and enables the systematic assessment of operability characteristics under
the presence of disturbances. Hence, process operability was formalized as a systematic
framework to simultaneously assess design and control objectives early in the conceptual phase
of industrial, typically large-scale, and nonlinear chemical processes.

To achieve the systematic assessment of design and control objectives simultaneously, process
operability is based on the definition of operability sets. These are spaces in the cartesian

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

1

https://doi.org/10.21105/joss.05966
https://github.com/openjournals/joss-reviews/issues/5966
https://github.com/CODES-group/opyrability
https://doi.org/10.5281/zenodo.10620959
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://github.com/gmxavier
https://github.com/mustafaalsalmi1999
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966


system that are defined with respect to the available inputs of a given process, their respective
achievable outputs, the desired regions of operation in the input and output spaces, and lastly,
any expected disturbances that may be present. The thorough definitions of these spaces
are readily available in the literature (Gazzaneo et al., 2020), as well as in the opyrability
documentation.

Therefore, opyrability is a Python package for process operability analysis and calculations,
with its API designed to provide a user-friendly interface to enable users to perform process
operability analysis seamlessly. This has the aim of reducing the complexity of dealing with the
programming aspects of nonlinear programming (Carrasco & Lima, 2017) and computational
geometry (Gazzaneo & Lima, 2019) operations needed when performing process operability
analyses.

Statement of need
Opyrability corresponds to a unified software tool to perform process operability analysis in
a single-bundle fashion. In broader terms, opyrability provides a formal and mathematically
tractable framework to systematically investigate the operability and achievability of industrial
processes earlier in the conceptual phase. This eliminates the need for resorting to ad-hoc-type
solutions to the design and control of industrial processes, which are inherently with loss of
generality. The use of this framework thus guarantees a solution to the operability problem
that is generalizable to any process, as long as a mathematical model of the given application is
available. Hence, the introduction of opyrability in Python, a widely used and freely available
programming language, is a significant advancement in the process operability field. Being
open-source and hosted in a community-driven environment, it offers a valuable resource to the
process systems engineering, computational catalysis and material sciences communities that
would benefit from operability direct/inverse mappings. This package empowers researchers
and practitioners to easily investigate the operability aspects of both emerging and existing
large-scale industrial processes. Additionally, on a lab scale, it can aid in the examination of
material properties that guide design decisions, such as reactions rate and membrane parameters
that would be needed to reach certain product specifications.

Moreover, opyrability is built on well-known and developed packages such as (i) numpy
(Harris et al., 2020) and (ii) scipy (Virtanen et al., 2020) for linear algebra and scientific
computing; (iii) matplotlib (Hunter, 2007) for visualizing the operable regions in 2D/3D; (iv)
cvxopt that allows access to glpk for linear programming; (v) polytope that enables efficient
polytopic calculations; and (vi) cyipopt that allows access to IPOPT (Wächter & Biegler,
2006), a state-of-the-art nonlinear programming solver, enabling efficient inverse mapping
operations within the operability framework. The inverse mapping task is further extended with
full support for automatic differentiation, powered by JAX (Bradbury et al., 2018). This effort
thus facilitates the dissemination of operability concepts and calculations in process systems
engineering and other fields. Figure 1 illustrates the dependency graph for opyrability.

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

2

https://codes-group.github.io/opyrability/operability_overview.html
https://cvxopt.org/
https://www.gnu.org/software/glpk/
https://tulip-control.github.io/polytope/
https://cyipopt.readthedocs.io/en/latest/?badge=latest
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966


ipopt_wrapper

cyipopt

opyrability

cvxopt

polytope

jax

jaxlib

matplotlib

scipy

numpy

Figure 1: Dependency graph generated with pydeps illustrating all numerical packages and visualization
tools used in opyrability.

Vignette
As a quick illustration of opyrability's capabilities, the example below available in the
examples gallery of the proposed tool depicts the operability analysis of a continuous stirred
tank reactor. In this example, the OI is evaluated for a desired region of operation for the
concentration of reactants A and B (as outputs). In particular, it is desired to obtain insight
on the design and operating region of this process, in terms of the reactor radius and its
operating temperature (as inputs). Process operability is employed to systematically analyze
which designs and operating temperatures are able to attain the requirements related to the
concentrations of A and B.

The fundamental idea of opyrability is to be an environment for engineers and scientists
that eliminates the burden of dealing with the transitioning among different software packages
and environments to perform process operability calculations. In addition, the knowledge
about computational geometry and constrained nonlinear programming can be limited to only
theoretical rather than having the users implement the operability algorithms since opyrability
already encapsulates all the necessary calculations.

In the example below, the user only needs to: (i) have simple Python programming knowledge,
limited to be able to perform mathematical modeling and manipulate numpy arrays; and
(ii) be able to interact with opyrability's functions, namely multimodel_rep, OI_eval and
nlp_based_approach, as shown in the API documentation. Figure 2 illustrates the process
and example in focus.

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

3

https://github.com/thebjorn/pydeps/
https://codes-group.github.io/opyrability/examples_gallery/index_example_gallery.html
https://codes-group.github.io/opyrability/api.html
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966


(A)

(D)(B)

Seamless operability quantification using opyrability: multimodel_rep and OI_eval

 Chemical reactions

TC

Reactant

CSTR temperature controller 

(C)

Figure 2: Opyrability multimodel representation. (A) Chemical reactor schematic. (B) Jupyter
notebook illustrating the use of the multimodel_rep and OI_eval functions, as well as the set-up of
these. (C) Visualization of the Achievable Output Set for the continuous stirred tank reactor example
including the operable boundaries of the process studied. (D) Quantification of the Operability Index
(OI), in which opyrability calculates that 39.14% of the desired operation can be achieved.

Lastly, Figure 3 depicts the use of opyrability's inverse mapping features by using the
nlp_based_approach function, allowing the user to obtain from a desired region in the output
space, the region in the input space that guarantees the desired operation.

Figure 3: opyrability's inverse mapping using nlp_based_approach, in which the input space that
guarantees the desired output set region is attained.

Availability
Opyrability is freely available in both PyPI and conda stores, as well as have its source code
hosted on GitHub. In addition, its documentation contains not only a thorough description

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

4

https://pypi.org/project/opyrability/
https://anaconda.org/codes-group/opyrability
https://github.com/CODES-group/opyrability
https://codes-group.github.io/opyrability/api.html
https://codes-group.github.io/opyrability/api.html
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966


of the API, but also a theoretical background discussion on process operability concepts, an
examples gallery, and instructions on how to set up a process model following opyrability

design principles. The idea is to supply both proper documentation to the users in the open-
source software community as well as to give the users the necessary amount of theory allowing
them to employ process operability principles in their specific application.

Acknowledgements
The authors acknowledge the support from the National Science Foundation CAREER Award
1653098.

References
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,

Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/
jax

Carrasco, J. C., & Lima, F. V. (2017). Novel operability-based approach for process design
and intensification: Application to a membrane reactor for direct methane aromatization.
AIChE Journal, 63(3), 975–983. https://doi.org/10.1002/aic.15439

Gazzaneo, V., Carrasco, J. C., Vinson, D. R., & Lima, F. V. (2020). Process operability
algorithms: Past, present, and future developments. Industrial & Engineering Chemistry
Research, 59(6), 2457–2470. https://doi.org/10.1021/acs.iecr.9b05181

Gazzaneo, V., & Lima, F. V. (2019). Multilayer operability framework for process design,
intensification, and modularization of nonlinear energy systems. Industrial & Engineering
Chemistry Research, 58(15), 6069–6079. https://doi.org/10.1021/acs.iecr.8b05482

Georgakis, C., Uztürk, D., Subramanian, S., & Vinson, D. R. (2003). On the operability of
continuous processes. Control Engineering Practice, 11(8), 859–869. https://doi.org/10.
1016/S0967-0661(02)00217-4

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Lima, F. V., & Georgakis, C. (2010). Input-output operability of control systems: The
steady-state case. Journal of Process Control, 20(6), 769–776. https://doi.org/10.1016/j.
jprocont.2010.04.008

Lima, F. V., Jia, Z., Ierapetritou, M., & Georgakis, C. (2010). Similarities and differences
between the concepts of operability and flexibility: The steady-state case. AIChE Journal,
56(3), 702–716. https://doi.org/10.1002/aic.12021

Subramanian, S., & Georgakis, C. (2005). Methodology for the steady-state operability analysis
of plantwide systems. Industrial & Engineering Chemistry Research, 44(20), 7770–7786.
https://doi.org/10.1021/ie0490076

Vinson, D. R., & Georgakis, C. (2000). A new measure of process output controllability. Journal
of Process Control, 10(2), 185–194. https://doi.org/10.1016/S0959-1524(99)00045-1

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

5

https://codes-group.github.io/opyrability/api.html
https://codes-group.github.io/opyrability/api.html
https://codes-group.github.io/opyrability/api.html
https://codes-group.github.io/opyrability/operability_overview.html
https://codes-group.github.io/opyrability/examples_gallery/index_example_gallery.html
https://codes-group.github.io/opyrability/process_model.html
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1002/aic.15439
https://doi.org/10.1021/acs.iecr.9b05181
https://doi.org/10.1021/acs.iecr.8b05482
https://doi.org/10.1016/S0967-0661(02)00217-4
https://doi.org/10.1016/S0967-0661(02)00217-4
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.jprocont.2010.04.008
https://doi.org/10.1016/j.jprocont.2010.04.008
https://doi.org/10.1002/aic.12021
https://doi.org/10.1021/ie0490076
https://doi.org/10.1016/S0959-1524(99)00045-1
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966


Vinson, D. R., & Georgakis, C. (2002). Inventory control structure independence of the
process operability index. Industrial & Engineering Chemistry Research, 41(16), 3970–3983.
https://doi.org/10.1021/ie0109814

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …
SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Ziegler, J., & Nichols, N. (1943). Process lags in automatic-control circuits. Transactions of
the American Society of Mechanical Engineers, 65(5), 433–440. https://doi.org/10.1115/
1.4018788

Alves et al. (2024). Opyrability: A Python package for process operability analysis. Journal of Open Source Software, 9(94), 5966. https:
//doi.org/10.21105/joss.05966.

6

https://doi.org/10.1021/ie0109814
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1115/1.4018788
https://doi.org/10.1115/1.4018788
https://doi.org/10.21105/joss.05966
https://doi.org/10.21105/joss.05966

	Summary
	Statement of need
	Vignette
	Availability
	Acknowledgements
	References

