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Summary
The electronic band structure is an important property for understanding and designing
solid crystalline materials in many fields such as photovoltaic, catalytic, thermoelectric and
transparent-conducting materials. Obtaining the band structure for an ideal crystal through first-
principles density functional theory (DFT) calculations is a well-established routine operation
(Ganose et al., 2018). However, the materials of interest are often complex and the simulation
cells may contain multiple primitive cells of the archetypal structure when, for example,
modelling disordered or defective materials (Kim et al., 2020). Repeating the unit cell in real
space results in folded band structures, as illustrated in Figure 1, complicating its interpretation
and analysis. Band structure unfolding maps the electronic structure from supercell calculations
back to the reciprocal lattice of the primitive cell, thereby enabling researchers to understand
structure-property relationships and compare the effect of various crystal imperfections on an
equal footing. With easyunfold, we provide a simple, easy-to-use, yet powerful and flexible
tool which implements the band structure unfolding workflow using plane-wave DFT codes,
from input file generation to publication-quality plotting.
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Figure 1: Schematics of band folding in a 2D lattice: (a) The primitive cell in real space; (b) The 2 × 2
supercell in real space. (c) A slice (𝜀) of the band structure in the Brillouin zone of the primitive cell; (d)
The same band structure slice (𝜀) in the Brillouin zone of the supercell. Band structure unfolding is the
process of transforming the band structure slice in (d) back to the Brillouin zone of the primitive cell
(i.e. the form shown in (c)).

Statement of need
There are existing packages that provide band structure unfolding capabilities, such as BandUp

(Tsirkin, 2017), and VaspBandUnfolding (QijingZheng, 2020). easyunfold is written in Python
with a focus on user-friendliness, data provenance, reproducibility, and publication-quality
figure generation. An example output of the effective band structure produced is shown in
Figure 2 for a 2×2×2 MgO supercell containing a neutral oxygen vacancy. Figure 3 shows the
orbital-projected effective band structure of a Cs2(Sn0.5,Ti0.5)Br6 vacancy-ordered perovskite
alloy (Kavanagh et al., 2022; Liga et al., 2023), in the Brillouin zone of the primitive 𝐹𝑚 ̄3𝑚
unit cell. A key feature of easyunfold is to provide data serialisation compliant with the
FAIR principles (Wilkinson et al., 2016). Both the input settings and calculated outputs are
stored in a single JSON file. This enables the unfolded band structure to be re-plotted and
further analysed without reprocessing the wave function data, which can be time-consuming
and require large storage space.

The package is designed with flexibility in mind. easyunfold can split a supercell calculation
into multiple runs. This functionality is essential for compute-heavy and memory-intensive
hybrid functional calculations, particularly if spin-orbit coupling is used, where the required
computational resources would quickly become intractable otherwise. Upon completion of all
calculations, their wave functions can be collected to generate a single effective band structure.
The atomic and orbital projections can be used to colour the effective band structure (Figure 2),
and the electronic density of states (DOS) can optionally be plotted alongside (Figure 3), which
can provide valuable information for analysing the underlying structure-property relationships.

We chose Python as the programming language due to its low barrier-to-entry, flexibility and
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popularity in the materials modelling field. An object-oriented approach is used when designing
the package to allow abstractions when reading and processing wave function data. The code
currently supports two of the most popular DFT codes, VASP (Kresse & Furthmüller, 1996a,
1996b) and CASTEP (Clark et al., 2005), and others can be added with a small amount of
coding effort. easyunfold depends on common scientific computing packages such as numpy

(Harris et al., 2020) and matplotlib (Hunter, 2007). The Atomic Simulation Environment
(ase) (Larsen et al., 2017) is used for reading input crystal structures from a wide range of
formats.

easyunfold is designed for researchers with or without prior knowledge of Python. A command-
line interface is provided as the primary way of using the package. Thanks to the Python
API, easyunfold can be easily integrated with workflow engines such as AiiDA (Huber et al.,
2020) and atomate (Mathew et al., 2017) as well as disorder/defect modelling codes such
as icet (Ångqvist et al., 2019) and doped (Kavanagh, 2022). easyunfold has been used in
several scientific publications (Huang et al., 2022; Nicolson et al., 2023; Wang et al., 2022)
and graduate student research projects.

The combination of user-friendliness, flexibility, and efficiency will improve the accessibility of
band structure unfolding and help train new researchers.

Figure 2: Atom-projected effective band structure of a 2 × 2 × 2 MgO supercell showing a localised
mid-gap state resulting from a neutral oxygen vacancy (using a relatively small supercell containing 63
atoms).
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Figure 3: Orbital-projected effective band structure of a disordered Cs2(Sn,Ti)Br6 vacancy-ordered
perovskite alloy (Kavanagh et al., 2022; Liga et al., 2023).

Theory
The mathematics of band structure unfolding has been discussed in detail in the work of
(Popescu & Zunger, 2012). Here, we only give a brief summary of the key ingredients.

Our goal is to reconstruct the energies of the Kohn-Sham states in the reciprocal lattice of the
primitive cell (𝐸(�⃗�)), given a more complex (folded) 𝐸(�⃗�) of the supercell.

Each �⃗�-point in the primitive cell’s first Brillouin zone can be mapped to a �⃗� in that of the
supercell:

�⃗� = �⃗� − ⃗𝐺0.

with ⃗𝐺0 being a reciprocal lattice vector of the supercell. Conversely, each �⃗� in the supercell
can be unfolded into a set of �⃗�𝑖:

�⃗�𝑖 = �⃗� + ⃗𝐺𝑖, 𝑖 = 1, ..., 𝑁

where �⃗�𝑖 is a set of 𝑁 �⃗�-points in the Brillouin zone of the primitive cell, with 𝑁 equalling the
number of primitive cells that the supercell includes in real space. For a given �⃗�, there is a
unique �⃗� that it folds to, as the first equation can be seen as to wrap the �⃗� into the smaller
reciprocal unit cell of the supercell. On the other hand, a single �⃗� may map to multiple �⃗�𝑖s,
as different �⃗�-points in the Brillouin zone of the primitive cell (Figure 1c) can fold onto the
same point in that of the supercell (Figure 1d).

To establish the relationship between 𝐸(�⃗�) and 𝐸(�⃗�), one can project ⟨�⃗�𝑚|, where 𝑚 labels
the band, on a set of primitive cell Bloch states ⟨�⃗�𝑖| and compute the spectral weight:
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𝑃�⃗�𝑚(�⃗�𝑖) = ∑
𝑛

|⟨�⃗�𝑚|�⃗�𝑖𝑛⟩|2.

where 𝑃 represents the probability of finding a set of primitive cell states ⟨�⃗�𝑖𝑛 contributing
to the supercell state ⟨�⃗�𝑚|, or the amount of Bloch character �⃗�𝑖 preserved in ⟨�⃗�𝑚| at the
same energy.

Presenting the spectral weights directly in two-dimensional plots can be problematic due to
the existence of states (𝑚) with degenerate or closely-spaced energies. A more interpretable
representation of the effective band structure is the spectral function, defined as:

𝐴(�⃗�𝑖, 𝐸) = ∑
𝑚

𝑃�⃗�𝑚(�⃗�𝑖)𝛿(𝐸𝑚 −𝐸).

where 𝐴 is the total intensity summed from all contributing 𝑃�⃗�𝑚 at �⃗�𝑖 and energy 𝐸. In
practice, the 𝛿 function is replaced with a Gaussian or Lorentzian function which smears the
contribution across a discretised energy grid.

For a plane wave basis, the 𝑃�⃗�𝑚(�⃗�𝑖) can be calculated as (equation 15 (Popescu & Zunger,
2012)):

𝑃�⃗�𝑚(�⃗�𝑖) = ∑
⃗𝑔
|𝐶 ⃗𝐾𝑚( ⃗𝑔 + ⃗𝐺𝑖)|2,

where ⃗𝑔 are the reciprocal lattice vectors of the primitive cell, and 𝐶 ⃗𝐾𝑚 is the plane wave
coefficient. Since the supercell lattice is commensurate with that of the primitive cell, the
plane wave coefficients to be summed, 𝐶 ⃗𝐾𝑚( ⃗𝑔 + ⃗𝐺𝑖), are included in the basis set of the
supercell. This means that a single supercell calculation producing the wave function (plane
wave coefficients) at each �⃗� required is sufficient for reconstructing the unfolded band structure.

The path of �⃗� in the primitive cell is often constructed with its symmetry in mind, and each �⃗�
along the path can be mapped to multiple equivalent ⃗𝑘𝑠 points given the symmetry of the
reference structure. However, these �⃗�𝑠 points may no longer be equivalent if the supercell has
broken symmetry – which is almost always the case when performing band structure unfolding.
This can be addressed by first expanding each �⃗� based on the symmetry operations of the
primitive cell, followed by a reduction using the symmetry of the supercell. The spectral weight
at each �⃗� is then a weighted combination of that from a set of �⃗�′𝑠 points that are inequivalent
under the symmetry of the supercell.
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