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Summary
Quantile regression forests (QRF) is a non-parametric, tree-based ensemble method for esti-
mating conditional quantiles (Meinshausen, 2006). It is a generalization of the random forests
algorithm, a versatile ensemble learning algorithm, originally proposed in (Breiman, 2001),
that has proven extremely popular and useful as a general-purpose machine learning method
(Athey et al., 2019; Biau & Scornet, 2016; Hengl et al., 2018; Wager & Athey, 2018). Instead
of outputting the weighted mean value of training labels like random forests regressors, QRF
employs the weighted empirical distribution of training labels to obtain the predictive distrib-
ution. This feature enables QRF to output probabilistic predictions for regression problems,
which are widely useful for constructing estimates of uncertainty (Petropoulos et al., 2022).

quantile-forest provides a fast, feature-rich QRF implementation. The estimators provided
in this package are optimized using Cython (Behnel et al., 2010) for training and inference
speed, and can estimate arbitrary quantiles at prediction time without retraining. They provide
methods for out-of-bag estimation, calculating quantile ranks, and computing proximity counts.
The provided QRF estimators are also compatible with and can serve as drop-in replacements
for the widely used forest regressors available in scikit-learn (Kramer, 2016). The package is
designed to be used by a broad array of researchers and in production business settings. It
has already been cited in scholarly work (Althoff, 2023; Prinzhorn, 2023; Saporta, 2023) and
used in a production setting at the real estate technology company Zillow. The combination
of speed, design, and functionality in quantile-forest enables exciting scientific explorations
in academia and industry alike.

Statement of Need
Quantile regression is useful for understanding relationships between variables outside of the
mean of the data, which can be particularly useful for understanding outcomes that are
non-normally distributed or that have nonlinear relationships with predictor variables. It can
be used to understand an outcome at its various quantiles and to compare groups or levels of
an exposure on those quantiles (Koenker, 2005).

QRF, an extension of the random forests algorithm, provides a flexible, nonlinear and nonpara-
metric way of performing quantile regression on the predictive distributions for high-dimensional
data. Unlike traditional machine learning algorithms that focus solely on point estimation,
QRF enables researchers to obtain a more comprehensive understanding of the underlying
data distribution. It provides predictions not only for the expected outcome but also for
various quantiles, allowing researchers to quantify uncertainties and capture the full spectrum
of potential outcomes. QRF has become a standard method for probabilistic prediction in
machine learning and has been applied to many areas requiring reliable probabilistic predictions.

Traditional prediction intervals often rely on assumptions such as normality, which may not
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hold in many real-world scenarios (Gyamerah & Moyo, 2020). QRF, on the other hand, allows
researchers to generate prediction intervals that are non-parametric, flexible, and adaptive to
different data distributions. This capability is invaluable for quantifying uncertainties in a wide
range of research areas, including finance (Córdoba et al., 2021), environmental sciences (Fang
et al., 2018; Francke et al., 2008; Zhang et al., 2018), healthcare (Dean et al., 2022; Molinder
et al., 2020), and more. A crucial difference between QRF and many other quantile regression
approaches is that after training a QRF once, one has access to all the quantiles at inference
time, whereas most approaches require retraining separately for each quantile.

As a cutting-edge statistical modeling technique, QRF holds enormous potential for researchers
across many domains, providing them with a powerful tool to address complex problems
involving quantile regression and uncertainty estimation. The QRF algorithm is broadly
available in R, which is host to the canonical QRF implementation (Meinshausen, 2017) as
well as established alternative implementations (Athey et al., 2019; Wright & Ziegler, 2017).
However Python has emerged as a prevailing standard programming language within the
scientific community, making it a popular option for researchers and practitioners. The absence
of a comprehensive Python QRF implementation severely hampers researchers’ ability to utilize
and benefit from its wide-ranging applications.

We seek to fill this need by providing a comprehensive Python-based QRF implementation.
While other Python-based implementations of the QRF algorithm exist and are meaningful
additions to the Python ecosystem (Kumar & others, 2017; Roebroek & others, 2022), none
currently provide performance and functionality comparable to the implementations available
in R, such as specifying quantiles at inference time or scaling to large datasets without
approximation. By contrast, the QRF implementation provided in this package has been
optimized for training and inference speed, enabling it to scale to millions of samples with
a runtime that is orders of magnitude faster than less-optimized solutions. It also allows
specifying prediction quantiles after training, permitting a trained model to be reused to
estimate conditional quantiles as needed. Beyond this, the package includes utilities that
enhance the algorithm’s applicability and usefulness for researchers and practitioners. These
utilities include:

• Out-of-bag scoring: The QRF algorithm can utilize the out-of-bag (OOB) samples,
which are the data points that are not used during the construction of a specific decision
tree in the forest. OOB scoring can be used to obtain unbiased estimates of prediction
errors and quantile-specific metrics, enabling researchers to assess the performance and
reliability of the QRF model without the need for additional validation datasets.

• Quantile rank calculation: The QRF algorithm can be leveraged to facilitate the calcula-
tion of quantile ranks. Quantile ranks provide a measure of relative standing for each
data point in the distribution. This capability allows researchers to compare and rank
observations based on their position within the quantile distribution, providing valuable
insights for various applications, such as risk assessment and anomaly detection.

• Proximity and similarity estimation: The QRF algorithm can compute proximity measures
that quantify the similarity between pairs of observations based on their paths through
the forest. These proximity measures capture the notion of closeness or similarity between
data points and enable researchers to perform tasks such as clustering, anomaly detection,
and identifying influential observations.

By incorporating these utilities into a Python-based QRF implementation, researchers gain
a comprehensive and versatile toolkit for quantile regression and uncertainty estimation.
Researchers can now harness the power of Python’s ecosystem to seamlessly integrate QRF
into their existing workflows, perform thorough model evaluation through OOB scoring, assess
quantile ranks, and leverage proximity and similarity measures for a wide range of data analysis
tasks. Altogether, this package enables researchers to estimate conditional quantiles accurately,
thereby empowering them to gain deeper insights into complex data.
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Examples

Training and Predicting
from quantile_forest import RandomForestQuantileRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

X, y = datasets.fetch_california_housing(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

qrf = RandomForestQuantileRegressor().fit(X_train, y_train)

y_pred = qrf.predict(X_test, quantiles=[0.025, 0.5, 0.975])

y_pred_oob = qrf.predict(X_train, quantiles=[0.025, 0.5, 0.975], oob_score=True)

Estimating Quantile Ranks
from quantile_forest import RandomForestQuantileRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

X, y = datasets.fetch_california_housing(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

qrf = RandomForestQuantileRegressor().fit(X_train, y_train)

y_ranks = qrf.quantile_ranks(X_test, y_test)

Computing Proximities
from quantile_forest import RandomForestQuantileRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

X, y = datasets.fetch_california_housing(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

qrf = RandomForestQuantileRegressor().fit(X_train, y_train)

proximities = qrf.proximity_counts(X_test)
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