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Summary
flowerMD is a package for reproducibly performing multi-stage HOOMD-blue (Anderson et
al., 2020) simulation workflows. It enables the programmatic specification of tasks including
definition of molecular structures, forcefield definition and application and chaining together
simulation stages (e.g., shrinking, equilibration, simulating a sequence of ensembles, tensile
testing, etc.) through an extensible set of Python classes. The modular design supports a
library of workflows for organic macromolecular and polymer simulations. Tutorials are provided
to demonstrate package features and flexibility.

Statement of need
High-level programmatic specifications of molecular simulation workflows are needed for two
reasons. First, they provide the information necessary for a simulation study to be reproduced,
and second, they help lower the cognitive load associated with learning and performing
simulations in general. Reproducible simulations benefit the research community by enabling
studies to be validated and extended. Lowering the cognitive load of performing molecular
simulations helps computational researchers of all levels of expertise reason about the logic of
a simulation study. This is particularly important for researchers new to the discipline because
developing the tools needed to perform experiments often involves: (a) gaining new software
development skills and knowledge, and (b) repeating work that others have already performed.

Recent advances in open-source tools have made the programmatic specification of molecular
simulation components easier than ever (Anderson et al., 2020; Eastman et al., 2017; Grünewald
et al., 2022; Hedges et al., 2019; Klein et al., 2016; Martin et al., 2018; Santana-Bonilla et al.,
2023; Swails et al., 2014; A. P. Thompson et al., 2022; M. Thompson et al., 2023). Individually,
each of these tools lower the cognitive load of one aspect of an overall workflow such as
representing molecules, building initial structures, parameterizing and applying a forcefield, and
running simulations. However, stitching these pieces together to create a complete workflow
presents a need that we address in the present work.

The computational researcher who follows best practices for accurate, accessible and re-
producible results may create a programmatic layer over these individual software packages
(i.e. wrapper) that serves to consolidate and automate a complete workflow. However, these
efforts often use a bespoke approach where the entire workflow design is tailored toward the
specific question or project. Design choices might include the materials studied, the model
used (e.g. atomistic or coarse-grained), the source of the forcefield in the model, and the
simulation protocols followed. As a result, this wrapper is likely unusable for the next project
where one of the aforementioned choices changes, and the process of designing a workflow
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must begin again from scratch.

Software packages such as Radonpy (Hayashi et al., 2022) exist that provide an automated
workflow for building molecules and bulk structures to calculating physical properties of
polymers. However, these tools may not be suitable for modeling complex experimental
processes that extend beyond measuring material properties, such as simulating fusion welding
of polymer interfaces (Aggarwal et al., 2020; Bukowski et al., 2021) and surface wetting
(Bamane et al., 2021; Fan & Caǧin, 1995).

flowerMD is a Python package that consolidates and automates end-to-end workflows for
modeling such engineering processes with a focus on organic molecules. We expand the
capabilities of MoSDeF (M. W. Thompson et al., 2020) and HOOMD-blue (Anderson et
al., 2020), following TRUE principles of software design (Transparent, Reproducible, Usable
by others, and Extensible (M. W. Thompson et al., 2020)) with modular components that
facilitate building and running workflows for specific materials science research applications,
while reducing the cognitive load and programming demands on the user’s part.

Building Blocks
flowerMD is extensible. Modular base classes serve as building blocks that lay the foundation
for constructing workflow recipes designed for specific applications. The resultant recipes are
agnostic to choices such as chemistry, model resolution (e.g. atomistic vs. coarse grained) and
forcefield selection. This is accomplished via three base classes:

• The Molecule class utilizes the mBuild (Klein et al., 2016) and GMSO (M. Thompson et
al., 2023) packages to initialize chemical structures from a variety of input formats. This
class provides methods for building polymers and copolymer structures, and supports a
straightforward coarse-graining process by leveraging SMARTS matching.

• The System class serves as an intermediary between molecular initialization and simulation
setup. This class builds the initial configuration and applies a chosen forcefield that defines
particle interactions.

• The Simulation class adds a layer on top of the HOOMD-blue simulation object, adding
additional methods and features to simplify the process of starting and resuming a HOOMD-blue
simulation.

Additionally, flowerMD offers a library pre-defined subclasses of these base classes including
common polymers, forcefields, and bulk system initialization algorithms.

Recipes
The modular design of flowerMD enables version-controlled workflows to be created
and shared. flowerMD currently includes two complete workflows: a polymer fusion
welding recipe and a surface wetting recipe. As an example, the polymer weld-
ing recipe uses the following subclasses:flowerMD.modules.welding.SlabSimulation,
flowerMD.modules.welding.Interface, flowerMD.modules.welding.WeldSimulation, and
flowerMD.library.simulations.Tensile.

Applying these routines in sequence defines a polymer welding recipe:

1. SlabSimulation creates one “slab” with two flat surfaces of e.g. polyethylene.
2. Interface duplicates the resultant slab and creates an “interface” system.
3. WeldSimulation simulates thermal welding at this interface.
4. Tensile simulates a tensile test of the resultant weld to create a stress/strain curve.

In this example, three different kinds of molecular dynamics simulations are combined in
sequence to enable the mechanical properties of a welded joint to be computed. By combining
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independent simulation steps and enabling any of them to be iterated over, a user can build
more complex workflows. For example, we could specify a screening study by iterating over
several weld temperatures, following each weld simulation with a sequence of tensile simulations
to investigate how temperature and strain rate influence the debonding pressure of a polymer
weld. For an in-depth understanding of the surface wetting workflow, interested readers can
refer to the flowerMD tutorials.

Each of the steps in a recipe takes the molecular system and forcefield as arguments, enabling
recipes that iterate over these concepts as well. For example, a user can create a recipe that
generates welds of a set of polymer chemistries. Or, a user can create a recipe that measures
the agreements in structural predictions for a set of forcefields.

flowerMD’s recipe focus allows researchers to concisely and programmatically specify their
desired simulation logic. By offloading the cognitive load of workflow specification, researchers
can more easily ensure this logic is correct before embarking on computationally expensive
studies. We encourage simulators of all levels of expertise to file issues requesting new features
and to submit pull requests to extend flowerMD’s utility.

Availability
flowerMD is freely available under the GNU General Public License (version 3) on GitHub. For
installation instructions, and Python API documentation please visit the documentation. For
examples of how to use flowerMD, please visit the tutorials.
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