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Summary
Machine Learning (ML) has become an increasingly popular tool to accelerate traditional
workflows. Critical to the use of ML is the process of splitting datasets into training, validation,
and testing subsets that are used to develop and evaluate models. Common practice in the
literature is to assign these subsets randomly. Although this approach is fast and efficient, it
only measures a model’s capacity to interpolate. Testing errors from random splits may be
overly optimistic if given new data that is dissimilar to the scope of the training set; thus,
there is a growing need to easily measure performance for extrapolation tasks. To address this
issue, we report astartes, an open-source Python package that implements many similarity-
and distance-based algorithms to partition data into more challenging splits. Separate from
astartes, users can then use these splits to better assess out-of-sample performance with any
ML model of choice. This publication focuses on use-cases within cheminformatics. However,
astartes operates on arbitrary vector inputs, so its principals and workflow are generalizable
to other ML domains as well. astartes is available via the Python package managers pip

and conda and is publicly hosted on GitHub (github.com/JacksonBurns/astartes).

Statement of Need
Machine learning has sparked an explosion of progress in chemical kinetics (Komp et al., 2022;
Spiekermann et al., 2022a), drug discovery (Bannigan et al., 2021; X. Yang et al., 2019),
materials science (Wei et al., 2019), and energy storage (Jha et al., 2023) as researchers use
data-driven methods to accelerate steps in traditional workflows within some acceptable error
tolerance. To facilitate adoption of these models, researchers must critically think about several
topics, such as comparing model performance to relevant baselines, operating on user-friendly
inputs, and reporting performance on both interpolative and extrapolative tasks Spiekermann,
Stuyver, et al. (2023). astartes aims to make it straightforward for machine learning scientists
and researchers to focus on two important points: rigorous hyperparameter optimization and
accurate performance evaluation.

First, astartes’ key function train_val_test_split returns splits for training, validation,
and testing sets using an sklearn-like interface. These splits can then separately be used
with any chosen ML model. This partitioning is crucial since best practices in data science
dictate that, in order to minimize the risk of hyperparameter overfitting, one must only
optimize hyperparameters with a validation set and use a held-out test set to accurately
measure performance on unseen data (Géron, 2019; Huyen, 2022; Lakshmanan et al., 2020;
Ramsundar et al., 2019; Wang et al., 2020). Unfortunately, many published papers only
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mention training and testing sets but do not mention validation sets, implying that they
optimize the hyperparameters to the test set, which would be blatant data leakage that leads
to overly optimistic results. For researchers interested in quickly obtaining preliminary results
without using a validation set to optimize hyperparameters, astartes also implements an
sklearn-compatible train_test_split function.

Second, it is crucial to evaluate model performance in both interpolation and extrapolation
settings so future users are informed of any potential limitations. Although random splits
are frequently used in the cheminformatics literature, this simply measures interpolation
performance. However, given the vastness of chemical space (Ruddigkeit et al., 2012) and
its often unsmooth nature (e.g. activity cliffs), it seems unlikely that users will want to be
restricted to exclusively operate in an interpolation regime. Thus, to encourage adoption of
these models, it is crucial to measure performance on more challenging splits as well. The
general workflow is: 1. Convert each molecule into a vector representation. 2. Cluster
the molecules based on similarity. 3. Train the model on some clusters and then evaluate
performance on unseen clusters that should be dissimilar to the clusters used for training.
Although measuring performance on chemically dissimilar compounds/clusters is not a new
concept (Bilodeau et al., 2023; Durdy et al., 2022; Heinen et al., 2021; Jorner et al., 2021;
Meredig et al., 2018; Stuyver & Coley, 2022; Terrones et al., 2023; Tricarico et al., 2022),
there are a myriad of choices for the first two steps; our software incorporates many popular
representations and similarity metrics to give users freedom to easily explore which combination
is suitable for their needs.

Example Use-Case in Cheminformatics
To demonstrate the difference in performance between interpolation and extrapolation,
astartes is used to generate interpolative and extrapolative data splits for two relevant
cheminformatics datasets. The impact of these data splits on model performance could be
analyzed with any ML model. Here, we train a modified version of Chemprop (K. Yang et
al., 2019)–a deep message passing neural network–to predict the regression targets of interest.
We use the hyperparameters reported by Spiekermann et al. (2022a) as implemented in the
barrier_prediction branch, which is publicly available on GitHub (Spiekermann, Pattanaik,
et al., 2023). First is property prediction with QM9 (Ramakrishnan et al., 2014), a dataset
containing approximately 133,000 small organic molecules, each containing 12 relevant chemical
properties calculated at B3LYP/6-31G(2df,p). We train a multi-task model to predict all
properties, with the arithmetic mean of all predictions tabulated below. Second is a single-task
model to predict a reaction’s barrier height using the RDB7 dataset (Spiekermann et al., 2022b,
2022c). This reaction database contains a diverse set of 12,000 organic reactions calculated at
CCSD(T)-F12 that is relevant to the field of chemical kinetics.

For each dataset, a typical interpolative split is generated using random sampling. We also
create two extrapolative splits for comparison. The first uses the cheminformatics-specific
Bemis-Murcko scaffold (Bemis & Murcko, 1996) as calculated by RDKit (Landrum & others,
2006). The second uses the more general-purpose K-means clustering based on the Euclidean
distance of Morgan (ECFP4) fingerprints using 2048 bit hashing and radius of 2 (Morgan,
1965; Rogers & Hahn, 2010). The QM9 dataset and RDB7 datasets were organized into
100 and 20 clusters, respectively. For each split, we create 5 different folds (by changing the
random seed) and report the mean ± one standard deviation of the mean absolute error (MAE)
and root-mean-squared error (RMSE).

Table 1: Average testing errors for predicting the 12 regression targets from QM9 (Ramakr-
ishnan et al., 2014).
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Split MAE RMSE
Random 2.02 ± 0.06 3.63 ± 0.21
Scaffold 2.20 ± 0.27 3.46 ± 0.49
K-means 2.48 ± 0.33 4.47 ± 0.81

Table 2: Testing errors in kcal/mol for predicting a reaction’s barrier height from RDB7
(Spiekermann et al., 2022b).

Split MAE RMSE
Random 3.87 ± 0.05 6.81 ± 0.28
Scaffold 6.28 ± 0.43 9.49 ± 0.50
K-means 5.47 ± 1.14 8.77 ± 1.85

Table 1 and Table 2 show the expected trend in which the average testing errors are higher
for the extrapolation tasks than they are for the interpolation task. The results from random
splitting are informative if the model is primarily used in interpolation settings. However,
these errors are likely unrealistically low if the model is intended to make predictions on new
molecules that are chemically dissimilar to those in the training set. Performance is worse on
the extrapolative data splits, which present a more challenging task, but these errors should
be more representative of evaluating a new sample that is out-of-scope. Together, these
tables demonstrate the utility of astartes in allowing users to better understand the likely
performance of their model in different settings.

Several approaches could be taken to further reduce the errors presented here. One could
pre-train on additional data or fine-tune with experimental values. Ensembling is another
established method to improve model predictions.

Related Software and Code Availability
In the machine learning space, astartes functions as a drop-in replacement for the ubiquitous
train_test_split from scikit-learn (Pedregosa et al., 2011). Transitioning existing code to
use this new methodology is as simple as running pip install astartes, modifying an import

statement at the top of the file, and then specifying an additional keyword parameter. astartes
has been especially designed to allow for maximum interoperability with other packages, using
few dependencies, supporting all platforms, and validated support for Python 3.7 through 3.11.
Specific tutorials on this transition are provided in the online documentation for astartes,
which is available on GitHub.

Here is an example workflow using train_test_split taken from the scikit-learn docu-
mentation (Pedregosa et al., 2011):

import numpy as np

from sklearn.model_selection import train_test_split

X, y = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, random_state=42)

To switch to using astartes, from sklearn.model_selection import train_test_split

becomes from astartes import train_test_split and the call to split the data is nearly
identical and simple in the extensions that it provides:
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import numpy as np

from astartes import train_test_split

X, y = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, sampler="kmeans", random_state=42)

With this small change, an extrapolative sampler based on k-means clustering will be used.

Inside cheminformatics, astartes makes use of all molecular featurization options implemented
in AIMSim (Bhattacharjee et al., 2023), which includes those from virtually all popular descriptor
generation tools used in the cheminformatics field.

The codebase itself has a clearly defined contribution guideline and thorough, easily accessible
documentation. astartes uses GitHub actions for Constant Integration testing including unit
tests, functional tests, and regression tests. To emphasize the reliability and reproducibility of
astartes, the data splits used to generate Table 1 and Table 2 are included in the regression
tests. Test coverage currently sits at >99%, and all proposed changes are subjected to a
coverage check and merged only if they cover all existing and new lines added as well as satisfy
the regression tests.
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