The Journal of Open Source Software

DOI: 10.21105/joss.06024

Software
= Review @0
= Repository &0
= Archive &0

Editor: Sophie Beck ¢
Reviewers:

= @marcocamma
= Qelena-pascal
= OKedoKudo

Submitted: 05 October 2023
Published: 20 February 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

A GPU-Accelerated Open-Source Python Package for
Calculating Powder Diffraction, Small-Angle-, and
Total Scattering with the Debye Scattering Equation

Frederik L. Johansen 1'2“1, Andy S. Anker 3'4*’1, Ulrik Friis-Jensen ® 12,

Erik B. Dam ©®2, Kirsten M. @. Jensen ® 'Y, and Raghavendra Selvan ® 29

1 Department of Chemistry & Nano-Science Center, University of Copenhagen, Denmark 2 Department
of Computer Science, University of Copenhagen, Denmark 3 Department of Energy Conversation and
Storage, Technical University of Denmark, Denmark 4 Department of Chemistry, University of Oxford,
United Kingdom 9 Corresponding author * These authors contributed equally.

Summary

The Debye scattering equation, derived in 1915 by Peter Debye, is used to calculate scattering
intensities from atomic structures considering the position of each atom in the structure (Debye,
1915; Scardi et al., 2016):

NN sin(Qr
1Q) = > by,)

R 1

ar,, (1)
In this equation () is the momentum transfer of the scattered radiation, IV is the number of
atoms in the structure, and Tuu is the distance between atoms v and p. For X-ray radiation, the
atomic form factor, b, depends strongly on @ and is usually denoted as f(Q), but for neutrons,
b is independent of () and referred to as the scattering length. The Debye scattering equation
can be used to compute the scattering pattern of any atomic structure and is commonly used
to study both crystalline and non-crystalline materials with a range of scattering techniques like
powder diffraction (PD), total scattering (TS) with pair distribution function (PDF) analysis,
and small-angle scattering (SAS) (Scardi et al., 2016). Although the Debye scattering equation
is extremely versatile, the computation of the double sum, which scales O(N?), has limited
the practical use of the equation.

With the advancement in computer hardware (Schaller, 1997), analysis of larger structures is
now feasible using the Debye scattering equation. Modern central processing units (CPUs),
ranging from tens to hundreds of cores offer an opportunity to parallelise computations,
significantly enhancing compute efficiency. The same goes for graphics processing units
(GPUs), which are designed with multiple cores acting as individual accelerated processing
units that can work on different tasks simultaneously. In contrast, CPUs usually have fewer
cores optimised for more general-purpose computing. This means that a GPU can execute
multiple simple instructions in parallel, while a CPU might handle fewer parallel tasks (Garland
et al., 2008). Therefore, GPUs are better suited for calculations such as the Debye scattering
equation, where many computations can be performed simultaneously. Taking advantage
of such GPU acceleration could yield computational speeds that surpass those of even the
most advanced multi-core CPUs; by orders of magnitude. We introduce a GPU-accelerated
open-source Python package, named DebyeCalculator, for rapid calculation of the Debye
scattering equation from chemical structures represented as .xyz or .cif files. The xyz-format
is commonly used in materials chemistry for the description of discrete particles and simply

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 1
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://orcid.org/0000-0002-8049-8624
https://orcid.org/0000-0002-7403-6642
https://orcid.org/0000-0001-6154-1167
https://orcid.org/0000-0002-8888-2524
https://orcid.org/0000-0003-0291-217X
https://orcid.org/0000-0003-4302-0207
https://doi.org/10.21105/joss.06024
https://github.com/openjournals/joss-reviews/issues/6024
https://github.com/FrederikLizakJohansen/DebyeCalculator
https://doi.org/10.5281/zenodo.10659528
https://orcid.org/0000-0002-9336-6065
https://github.com/marcocamma
https://github.com/elena-pascal
https://github.com/KedoKudo
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06024

The Journal of Open Source Software

consists of a list of atomic identities and their respective Cartesian coordinates (x, y, and
z). DebyeCalculator can take a crystallographic information file (CIF) and a user-defined
spherical radius as input to generate an .xyz file from which a scattering pattern is calculated.
We further calculate the PDF as described by Egami and Billinge (Egami & Billinge, 2003).
We show that our software can simulate PD, TS, SAS, and PDF data orders of magnitudes
faster than DiffPy-CMI (Juhas et al., 2015). DebyeCalculator is an open-source project that
is readily available through GitHub and PyPI.

Here, we present a high-level overview of the DebyeCalculator class. The GitHub repository
provides more details as well as annotated source code.

CLASS “DebyeCalculator’:
FUNCTION Initialise(parameters...):
- Set class parameters based on given input or defaults
- Setup scattering parameters (e.g., Q-values, r-values) and hardware parameters
- Load atomic form factor coefficients
- Setup form factor calculation based on radiation type

FUNCTION gr(structure_path, keep_on_device=False):
- Load atomic structure from given structure_path
- Calculate atomic form factors
- Calculate scattering intensity I(Q) (Debye scattering equation)
- Compute structure factor S(Q) based on I(Q)
- Calculate F(Q) based on Q-values and S(Q)
- Apply modifications if necessary (like dampening and Lorch)
- Calculate pair distribution function G(r) based on F(Q)
- Return G(r) either on GPU or CPU

In order to benchmark our implementation, we compare simulated scattering patterns from
DebyeCalculator against DiffPy-CMI (Juhés et al., 2015), which is a widely recognised
software for scattering pattern computations. Here, our implementation obtains the same
scattering patterns as DiffPy-CMI (Figure 3), while being faster on CPU for structures up to
~20,000 atoms (Figure 1). Both calculations are run on a x86-64 CPU with 64GB of memory
and a batch size of 10,000. Running the calculations on the GPU provides another notable
boost in speed (Figure 1). This improvement primarily stems from the distribution of the
double sum calculations across a more extensive set of cores than is feasible on the CPU. With
smaller atomic structures, an overhead associated with initiating GPU calculations results in
the NVIDIA RTX A3000 Laptop GPU computations being slower than DiffPy-CMI and our
CPU implementation. Once the atomic structure size exceeds ~14 A in diameter (~300 atoms),
we observe a ~5 times speed-up using an NVIDIA RTX A3000 Laptop GPU with 6GB of
memory and a batch size of 10,000. The choice of GPU hardware has a substantial influence
on this speed advantage. As demonstrated in Figure 1, using an NVIDIA Titan RTX GPU,
which offers 24GB of memory, the speed benefits become even more evident. The NVIDIA
Titan RTX GPU delivers a performance that is ~10 times faster, seemingly across all structure
sizes, underlining the significant role of the hardware. With the advancements of GPUs like
NVIDIA's Grace Hopper Superchip (NVIDIA, 2024), which boasts 624GB of fast-access to
memory, there is potential for DebyeCalculator to achieve even greater speeds in the future.

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 2
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://github.com/FrederikLizakJohansen/DebyeCalculator
https://pypi.org/project/DebyeCalculator/
https://doi.org/10.21105/joss.06024

The Journal of Open Source Software

Est. number of atoms
5 383 2045 5819 12581 27161

—0— DiffPy-CMI

—— DebyeCalculator (CPU)
102 4 DebyeCalculator (NVIDIA RTX A3000 Laptop GPU)
—O— DebyeCalculator (NVIDIA TITAN RTX)

1014

100 4

1014

10—2 4

PDF simulation time [sec.], log-scale

PDF simulation time [sec.]

o
L

20 40 60 80

Structure diameter [A]

10—3 4

10 20 30 40 50 60 70 80
Structure diameter [A]

Figure 1: Computation-time comparison of the G(r) calculation using our CPU- and GPU-implementations
against DiffPy-CMI (Juhés et al., 2015). For the CPU-implementation, a batch size of 10,000 was chosen
(x86-64 CPU with 6GB). Both the GPU implementations were run with a batch size of 10,000 (NVIDIA
RTX A3000 Laptop GPU with 6GB of memory and NVIDIA Titan RTX GPU with 24GB of memory).
The mean and standard deviation of the PDF simulation times are calculated from 10 runs. Note that,
due to limited memory, the Laptop GPU was unable to handle structures larger than ~24,000 atoms. A
CIF from an antifluorite structure was used to generate this data.

Statement of need

Several software packages already exist for simulating the Debye scattering equation, including
DiffPy-CMI (Juhas et al., 2015), debyer (Wojdyr, 2023), Debussy (Cervellino et al., 2010,
2015), DISCUS (Th Proffen & Neder, 1999; Thomas Proffen & Neder, 1997), and BCL::SAXS
(Putnam et al., 2015). DebyeCalculator stands out as it is open-source, Python-based,
and GPU-compatible. Python's status as an extremely popular and accessible language in
scientific computing makes it straightforward for researchers to quickly perform Debye scattering
calculations while ensuring easy integration with other data science tools. DebyeCalculator is
open-source licensed under the Apache License 2.0. Moreover, it can be installed conveniently
via pip install debyecalculator and has been integrated with Google Colab, allowing
users to rapidly calculate PD, TS, SAS, and PDF data using the Debye scattering equation
without the need of local software installations. DebyeCalculator can also be run through an
interactive interface (see Figure 2), where users can calculate I(Q), S(Q), F(Q), and G(r)
from structural models on both CPU and GPU.

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 3
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://github.com/FrederikLizakJohansen/DebyeCalculator/blob/main/data/AntiFluorite_Co2O.cif
https://colab.research.google.com/github/FrederikLizakJohansen/DebyeCalculator/blob/main/InteractiveMode_Colab.ipynb
https://doi.org/10.21105/joss.06024

‘Scatoring Optons | Piting Optone. farduare Optlns

100-3000
000-2000

slabal B, (A [03

Sthow/Hide plots:
1Q) s@ FQ) G(r)

Max-normalize plots

01Q 0 5@ 0 FQ) 0G)

LA ¢ T
(il i L |

Figure 2: The interact mode of DebyeCalculator provides a one-click interface, where the user can
update parameters and visualise I(Q), S(Q), F(Q), and G(r). Additionally, the I(Q), S(Q), F(Q),
G(r), and xyz file can be downloaded, including metadata.

Acknowledgements

This work is part of a project that has received funding from the European Research Council
(ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant
agreement No. 804066). We are grateful for funding from University of Copenhagen through
the Data+ program.

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 4
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://doi.org/10.21105/joss.06024

SS

The Journal of Open Source Software

Supporting Information

= DiffPy-CMI —— DebyeCalculator (Ours) —— Difference
led Scattering Intensity 1e6 Small Angle Scattering Intensity
1.501
1.25
» 1.00)
[=4 [=4
3 3
g 0.75 g
So.s0 g
0.25
0.00
0 5 10 15 20 25 30 35 40 1072 107 10°
QA1 QA1
Reduced Structure Function Reduced Pair Distribution Function
E E
=, &,
o =
T ©
0 5 10 15 20 25 30 35 40 0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
QA1 r (4]

Figure 3: Comparison of the calculated I(Q), SAXS, F(Q), and G(r) of DebyeCalculator and DiffPy-CMI
(Juhés et al., 2015) on a discrete, spherical cutout with 6 A in radius from a V ¢g5Al; 050, crystal
(Ghedira et al., 1977).

References

Cervellino, A., Frison, R., Bertolotti, F., & Guagliardi, A. (2015). DEBUSSY 2.0: The new
release of a Debye user system for nanocrystalline and/or disordered materials. J. Appl.
Crystallogr., 48(6), 2026—-2032. https://doi.org/10.1107/5S1600576715020488

Cervellino, A., Giannini, C., & Guagliardi, A. (2010). DEBUSSY: A Debye user system for
nanocrystalline materials. J. Appl. Crystallogr., 43(6), 1543-1547. https://doi.org/10.
1107/50021889810041889

Debye, P. (1915). Zerstreuung von Réntgenstrahlen. Annalen der Physik, 351(6), 809-823.
https://doi.org/10.1002/andp.19153510606

Egami, T., & Billinge, S. J. (2003). Underneath the Bragg peaks: Structural analysis of
complex materials. Elsevier. https://doi.org/10.1016/c2010-0-66357-7

Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E.,
Zhang, Y., & Volkov, V. (2008). Parallel computing experiences with CUDA. IEEE Micro,
28(4), 13-27. https://doi.org/10.1109/MM.2008.57

Ghedira, M., Vincent, H., Marezio, M., & Launay, J. C. (1977). Structural aspects of the
metal-insulator transitions in V[gg5 Al g1505. J. Solid State Chem., 22(4), 423-438.
https://doi.org/10.1016/0022-4596(77)90020-2

Juhas, P, Farrow, C., Yang, X., Knox, K., & Billinge, S. (2015). Complex modeling: A
strategy and software program for combining multiple information sources to solve ill

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 5
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://doi.org/10.1107/S1600576715020488
https://doi.org/10.1107/S0021889810041889
https://doi.org/10.1107/S0021889810041889
https://doi.org/10.1002/andp.19153510606
https://doi.org/10.1016/c2010-0-66357-7
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1016/0022-4596(77)90020-2
https://doi.org/10.21105/joss.06024

SS

The Journal of Open Source Software

posed structure and nanostructure inverse problems. Acta Crystallogr. A, 71(6), 562-568.
https://doi.org/10.1107/s2053273315014473

NVIDIA. (2024). NVIDIA grace hopper superchip data sheet - accessed: 2024-02-20. In
NVIDIA. https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

Proffen, Th, & Neder, R. (1999). DISCUS, a program for diffuse scattering and defect
structure simulations—update. Journal of Applied Crystallography, 32(4), 838-839. https:
//doi.org/10.1107,/50021889899004860

Proffen, Thomas, & Neder, R. B. (1997). DISCUS: A program for diffuse scattering and
defect-structure simulation. Journal of Applied Crystallography, 30(2), 171-175. https:
//doi.org/10.1107,/5002188989600934X

Putnam, D. K., Weiner, B. E., Woetzel, N., Lowe Jr, E. W., & Meiler, J. (2015). BCL::SAXS:
GPU accelerated Debye method for computation of small-angle X-ray scattering profiles.
Proteins: Struct., Funct., Genet., 83(8), 1500-1512. https://doi.org/10.1002/prot.24838

Scardi, P., Billinge, S. J., Neder, R., & Cervellino, A. (2016). Celebrating 100 years of the
Debye scattering equation. In Acta Crystallogr. A (No. 6; Vol. 72, pp. 589-590).
International Union of Crystallography. https://doi.org/10.1107/S2053273316015680

Schaller, R. R. (1997). Moore's law: Past, present and future. IEEE Spectrum, 34(6), 52-59.
https://doi.org/10.1109/6.591665

Wojdyr. (2023). Wojdyr/debyer: Debye's scattering equation and other analysis of atomistic
models. In GitHub. https://github.com/wojdyr/debyer

Johansen et al. (2024). A GPU-Accelerated Open-Source Python Package for Calculating Powder Diffraction, Small-Angle-, and Total Scattering 6
with the Debye Scattering Equation. Journal of Open Source Software, 9(94), 6024. https://doi.org/10.21105/joss.06024.

https://doi.org/10.1107/s2053273315014473
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip
https://doi.org/10.1107/S0021889899004860
https://doi.org/10.1107/S0021889899004860
https://doi.org/10.1107/S002188989600934X
https://doi.org/10.1107/S002188989600934X
https://doi.org/10.1002/prot.24838
https://doi.org/10.1107/S2053273316015680
https://doi.org/10.1109/6.591665
https://github.com/wojdyr/debyer
https://doi.org/10.21105/joss.06024

	Summary
	Statement of need
	Acknowledgements
	Supporting Information
	References

