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Summary

The Debye scattering equation, derived in 1915 by Peter Debye, is used to calculate scattering
intensities from atomic structures considering the position of each atom in the structure (Debye,
1915; Scardi et al., 2016):
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In this equation () is the momentum transfer of the scattered radiation, IV is the number of
atoms in the structure, and Tuu is the distance between atoms v and p. For X-ray radiation, the
atomic form factor, b, depends strongly on @ and is usually denoted as f(Q), but for neutrons,
b is independent of () and referred to as the scattering length. The Debye scattering equation
can be used to compute the scattering pattern of any atomic structure and is commonly used
to study both crystalline and non-crystalline materials with a range of scattering techniques like
powder diffraction (PD), total scattering (TS) with pair distribution function (PDF) analysis,
and small-angle scattering (SAS) (Scardi et al., 2016). Although the Debye scattering equation
is extremely versatile, the computation of the double sum, which scales O(N?), has limited
the practical use of the equation.

With the advancement in computer hardware (Schaller, 1997), analysis of larger structures is
now feasible using the Debye scattering equation. Modern central processing units (CPUs),
ranging from tens to hundreds of cores offer an opportunity to parallelise computations,
significantly enhancing compute efficiency. The same goes for graphics processing units
(GPUs), which are designed with multiple cores acting as individual accelerated processing
units that can work on different tasks simultaneously. In contrast, CPUs usually have fewer
cores optimised for more general-purpose computing. This means that a GPU can execute
multiple simple instructions in parallel, while a CPU might handle fewer parallel tasks (Garland
et al., 2008). Therefore, GPUs are better suited for calculations such as the Debye scattering
equation, where many computations can be performed simultaneously. Taking advantage
of such GPU acceleration could yield computational speeds that surpass those of even the
most advanced multi-core CPUs; by orders of magnitude. We introduce a GPU-accelerated
open-source Python package, named DebyeCalculator, for rapid calculation of the Debye
scattering equation from chemical structures represented as .xyz or .cif files. The xyz-format
is commonly used in materials chemistry for the description of discrete particles and simply
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consists of a list of atomic identities and their respective Cartesian coordinates (x, y, and
z). DebyeCalculator can take a crystallographic information file (CIF) and a user-defined
spherical radius as input to generate an .xyz file from which a scattering pattern is calculated.
We further calculate the PDF as described by Egami and Billinge (Egami & Billinge, 2003).
We show that our software can simulate PD, TS, SAS, and PDF data orders of magnitudes
faster than DiffPy-CMI (Juhas et al., 2015). DebyeCalculator is an open-source project that
is readily available through GitHub and PyPI.

Here, we present a high-level overview of the DebyeCalculator class. The GitHub repository
provides more details as well as annotated source code.

CLASS “DebyeCalculator’:
FUNCTION Initialise(parameters...):
- Set class parameters based on given input or defaults
- Setup scattering parameters (e.g., Q-values, r-values) and hardware parameters
- Load atomic form factor coefficients
- Setup form factor calculation based on radiation type

FUNCTION gr(structure_path, keep_on_device=False):
- Load atomic structure from given structure_path
- Calculate atomic form factors
- Calculate scattering intensity I(Q) (Debye scattering equation)
- Compute structure factor S(Q) based on I(Q)
- Calculate F(Q) based on Q-values and S(Q)
- Apply modifications if necessary (like dampening and Lorch)
- Calculate pair distribution function G(r) based on F(Q)
- Return G(r) either on GPU or CPU

In order to benchmark our implementation, we compare simulated scattering patterns from
DebyeCalculator against DiffPy-CMI (Juhés et al., 2015), which is a widely recognised
software for scattering pattern computations. Here, our implementation obtains the same
scattering patterns as DiffPy-CMI (Figure 3), while being faster on CPU for structures up to
~20,000 atoms (Figure 1). Both calculations are run on a x86-64 CPU with 64GB of memory
and a batch size of 10,000. Running the calculations on the GPU provides another notable
boost in speed (Figure 1). This improvement primarily stems from the distribution of the
double sum calculations across a more extensive set of cores than is feasible on the CPU. With
smaller atomic structures, an overhead associated with initiating GPU calculations results in
the NVIDIA RTX A3000 Laptop GPU computations being slower than DiffPy-CMI and our
CPU implementation. Once the atomic structure size exceeds ~14 A in diameter (~300 atoms),
we observe a ~5 times speed-up using an NVIDIA RTX A3000 Laptop GPU with 6GB of
memory and a batch size of 10,000. The choice of GPU hardware has a substantial influence
on this speed advantage. As demonstrated in Figure 1, using an NVIDIA Titan RTX GPU,
which offers 24GB of memory, the speed benefits become even more evident. The NVIDIA
Titan RTX GPU delivers a performance that is ~10 times faster, seemingly across all structure
sizes, underlining the significant role of the hardware. With the advancements of GPUs like
NVIDIA's Grace Hopper Superchip (NVIDIA, 2024), which boasts 624GB of fast-access to
memory, there is potential for DebyeCalculator to achieve even greater speeds in the future.
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Figure 1: Computation-time comparison of the G(r) calculation using our CPU- and GPU-implementations
against DiffPy-CMI (Juhés et al., 2015). For the CPU-implementation, a batch size of 10,000 was chosen
(x86-64 CPU with 6GB). Both the GPU implementations were run with a batch size of 10,000 (NVIDIA
RTX A3000 Laptop GPU with 6GB of memory and NVIDIA Titan RTX GPU with 24GB of memory).
The mean and standard deviation of the PDF simulation times are calculated from 10 runs. Note that,
due to limited memory, the Laptop GPU was unable to handle structures larger than ~24,000 atoms. A
CIF from an antifluorite structure was used to generate this data.

Statement of need

Several software packages already exist for simulating the Debye scattering equation, including
DiffPy-CMI (Juhas et al., 2015), debyer (Wojdyr, 2023), Debussy (Cervellino et al., 2010,
2015), DISCUS (Th Proffen & Neder, 1999; Thomas Proffen & Neder, 1997), and BCL::SAXS
(Putnam et al., 2015). DebyeCalculator stands out as it is open-source, Python-based,
and GPU-compatible. Python's status as an extremely popular and accessible language in
scientific computing makes it straightforward for researchers to quickly perform Debye scattering
calculations while ensuring easy integration with other data science tools. DebyeCalculator is
open-source licensed under the Apache License 2.0. Moreover, it can be installed conveniently
via pip install debyecalculator and has been integrated with Google Colab, allowing
users to rapidly calculate PD, TS, SAS, and PDF data using the Debye scattering equation
without the need of local software installations. DebyeCalculator can also be run through an
interactive interface (see Figure 2), where users can calculate I(Q), S(Q), F(Q), and G(r)
from structural models on both CPU and GPU.
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Figure 2: The interact mode of DebyeCalculator provides a one-click interface, where the user can
update parameters and visualise I(Q), S(Q), F(Q), and G(r). Additionally, the I(Q), S(Q), F(Q),
G(r), and xyz file can be downloaded, including metadata.
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Figure 3: Comparison of the calculated I(Q), SAXS, F(Q), and G(r) of DebyeCalculator and DiffPy-CMI
(Juhés et al., 2015) on a discrete, spherical cutout with 6 A in radius from a V ¢g5Al; 050, crystal
(Ghedira et al., 1977).
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