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Summary
Almost all science and engineering applications eventually stop scaling: their runtime no longer
decreases as available computational resources increase. Therefore, many applications will
struggle to efficiently use emerging extreme-scale high-performance, parallel, and distributed
systems. libEnsemble is a complete Python toolkit and workflow system for intelligently
driving ensembles of experiments or simulations at massive scales. It enables and encourages
multidisciplinary design, decision, and inference studies portably running on laptops, clusters,
and supercomputers.

Statement of Need
While a growing number of packages are aimed at workflows, relatively few focus on running
dynamic ensembles of calculations on clusters and supercomputers. Dynamic ensembles are
workflows of computations that are defined and steered based on intermediate results. Examples
include determining simulation parameters using numerical optimization methods, machine
learning techniques, or statistical calibration tools. In each of these examples, the ensemble
members are typically simulations that use different parameters or data. Additional examples
of applications that have used libEnsemble are surveyed in the Representative libEnsemble Use
Cases section below.

The target audience for libEnsemble includes scientists, engineers, and other researchers who
stand to benefit from such dynamic workflows.

Key considerations for packages running dynamic ensembles include the following:

• Ease of use – whether the software requires a complex setup

• Portability – running on diverse machines with different schedulers, hardware, and
communication modes (e.g., MPI runners) with minimal modification to user scripts

• Scalability – working efficiently with large-scale and/or many concurrent simulations

• Interoperability – the modularity of the package and the ability to interoperate with
other packages

• Adaptive resource management – the ability to adjust resources given to each simulation
throughout the ensemble

• Efficient resource utilization – including the ability to cancel simulations on the fly
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libEnsemble seeks to satisfy the above criteria using a generator–simulator–allocator model.
libEnsemble’s generators, simulators, and allocators – commonly referred to as user functions –
are simply Python functions that accept and return NumPy (Harris et al., 2020) structured
arrays. Generators produce input for simulators, simulators evaluate those inputs, and allocators
decide whether and when a simulator or generator should be called; any level of complexity is
supported. Multiple concurrent instances (an “ensemble”) of user functions are coordinated by
libEnsemble’s worker processes. Workers are typically assigned/reassigned compute resources;
within user functions, workers can launch applications, evaluate intermediate results, and
communicate via the manager.

Related Work
Other packages for managing workflows and ensembles include Colmena (Ward et al., 2021)
and the RADICAL-Ensemble Toolkit (Balasubramanian et al., 2016) as well as packages such
as Parsl (Babuji et al., 2019) and Balsam (Salim et al., 2019) that provide backend dispatch
and execution.

libEnsemble’s unique generator–simulator–allocator paradigm eliminates the need for users to
explicitly define task dependencies. Instead, it emphasizes data dependencies between these
customizable Python user functions. This modular design also lends itself to exploiting the large
library of example user functions provided with libEnsemble or available from the community
(e.g., libEnsemble Community (2023)), maximizing code reuse. For instance, users can readily
choose an existing generator function and tailor a simulator function to their particular needs.

libEnsemble takes the philosophy of minimizing required dependencies while supporting various
backend mechanisms when needed. In contrast to other packages that cover only a subset
of such a workflow, libEnsemble is a complete toolkit that includes generator-in-the-loop
and backend mechanisms. For example, Colmena uses frontend components to create and
coordinate tasks while using Parsl to dispatch simulations.

For example, the vast majority of current use cases do not require a database or special runtime
environment. For use cases that have such requirements, Balsam can be used on the backend
by substituting the regular MPI executor for the Balsam executor. This approach simplifies the
user experience and reduces the initial setup and adoption costs when using libEnsemble.

libEnsemble Functionality
libEnsemble communicates between a manager and multiple workers using either Python’s
built-in multiprocessing, MPI (via mpi4py (Dalcín et al., 2008)), or TCP.

To achieve portability, libEnsemble detects runtime setup information not commonly detected
by other packages: It detects crucial system information such as scheduler details, MPI
runners, core counts, and GPU counts (for different types of GPUs) and uses these to produce
run-lines and GPU settings for these systems, without the user having to alter scripts. For
example, on a system that uses Slurm’s srun, libEnsemble will use srun options to assign
GPUs, while on other systems it will assign GPUs via the appropriate environment variables
such as ROCR_VISIBLE_DEVICES or CUDA_VISIBLE_DEVICES, allowing the user to simply state
the number of GPUs needed for each simulation. For cases where autodetection is insufficient,
the user can supply platform information or the name of a known system via scripts or an
environment variable. This makes it simple to transfer user scripts between platforms.

By default, libEnsemble equally divides available compute resources among workers. When
simulation parameters are created, however, the number of processes and GPUs can also
be specified for each simulation. The close coupling between the libEnsemble generators
and simulators enables a generator to perform tasks such as asynchronously receiving results,
updating models, and canceling previously initiated simulations. Simulations that are already
running can be terminated and resources recovered. This approach is more flexible compared
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with other packages, where the generation of simulations is external to the dispatch of a batch
of simulations.

libEnsemble also supports “persistent user functions” that maintain their state while running
on workers. This prevents the need to store and reload data as is done by other ensemble
packages that support only a fire-and-forget approach to ensemble components.

Representative libEnsemble Use Cases
Examples of libEnsemble applications in science and engineering include the following:

• Optimization of variational algorithms on quantum computers (Liu et al., 2022)
• Parallelization of the ParMOO solver for multiobjective simulation optimization problems

(Chang & Wild, 2023)
• Design of particle accelerators (A. Ferran Pousa et al., 2022; A. Ferran Pousa et al.,

2023; Neveu et al., 2023)
• Sequential Bayesian experimental design (Sürer et al., 2023) and Bayesian calibration

(Chan et al., 2023)

A selection of community-provided libEnsemble functions and workflows that users can build
off is maintained in libEnsemble Community (2023).

Additional details on the parallel features and scalability of libEnsemble can be found in Hudson
et al. (2022) and Hudson et al. (2023).
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