
Shapelets: A Python package implementing shapelet
functions and their applications
Matthew Peres Tino 1, Abbas Yusuf Abdulaziz1, Robert Suderman2,
Thomas Akdeniz3, and Nasser Mohieddin Abukhdeir 1,4,5¶

1 Department of Chemical Engineering, University of Waterloo, Ontario, Canada 2 Google Inc. 3 East
Coast Asset Management SEZC 4 Department of Physics and Astronomy, University of Waterloo,
Ontario, Canada 5 Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, Canada ¶
Corresponding author

DOI: 10.21105/joss.06058

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @tbmiller-astro
• @Anshuman5

Submitted: 30 September 2023
Published: 18 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Shapelets is a Python-based software package that implements several shapelet functions
(Refregier, 2003) and some of their significant applications in science and astronomy. Shapelet
functions are a complete and orthogonal set of localized basis functions with mathematical
properties convenient for manipulation and analysis of images from a broad range of applications.
Over the past few decades, there have been several different shapelet function formulations
developed and applied in the areas of astronomy/astrophysics (Bergé et al., 2019; Birrer et
al., 2015; Desvignes et al., 2016; Lentati et al., 2015; Massey & Refregier, 2005; Refregier,
2003), self-assembled nanomaterials (Akdeniz et al., 2018; Suderman et al., 2015; Tino et al.,
2024), computational neuroscience (Sharpee & Victor, 2009; Victor et al., 2006), and medical
imaging (Weissman et al., 2004).

The shapelets software package provides reference implementations and documentation for
four different shapelet formulations: cartesian (Refregier, 2003), polar (Massey & Refregier,
2005), orthonormal polar with constant radial scale (Akdeniz et al., 2018), and exponential
(Bergé et al., 2019). Additionally, the shapelets package provides reference implementations
of several applications of shapelet functions in astronomy (galactic image decomposition and
reconstruction (Massey & Refregier, 2005; Refregier, 2003)) and self-assembly (quantification
of nanostructure order (Akdeniz et al., 2018; Suderman et al., 2015; Tino et al., 2024)). The
coding style of shapelets is based on that of scipy.special (Virtanen et al., 2020).

For ease of use, shapelets also provides a text-based user interface and Python entry points
(custom terminal commands) to improve accessibility for a broad range of potential users in
science and engineering, including those without a strong Python programming background.
For example, the text configuration file interface can be invoked via shapelets config, and
running the unit tests associated with the package can be invoked via shapelets-test.

Lastly, the shapelets package includes a set of detailed examples which demonstrate usage
of the software through both the text configuration and programmatic interfaces. These
examples include both astronomy and self-assembly applications, providing users with a basis
for developing their own applications for the package and shapelet functions in general.

Statement of Need
Shapelets are a class of complete localized orthogonal basis functions with a broad range
of applications in image processing and reconstruction (Akdeniz et al., 2018; Massey &
Refregier, 2005; Refregier, 2003; Suderman et al., 2015; Tino et al., 2024). Despite their

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

1

https://orcid.org/0009-0005-6832-1761
https://orcid.org/0000-0002-1772-0376
https://doi.org/10.21105/joss.06058
https://github.com/openjournals/joss-reviews/issues/6058
https://github.com/uw-comphys/shapelets
https://doi.org/10.5281/zenodo.10819578
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://github.com/tbmiller-astro
https://github.com/Anshuman5
https://creativecommons.org/licenses/by/4.0/
https://docs.scipy.org/doc/scipy/reference/special.html
https://packaging.python.org/en/latest/specifications/entry-points/
https://doi.org/10.21105/joss.06058


increasingly widespread use, there is currently no single software package that is both broadly
accessible (e.g. written in Python or other high-level programming language) and implements
several useful applications. Currently, there exists an open-source astronomy-focused shapelet
software package (Massey & Refregier, 2005), however, it is written in the Interactive Data
Language (IDL) programming language which is not widely used in the science and engineering
communities. Furthermore, this package has not been updated in over a decade. Given
the increasingly broad usage of shapelets in areas outside of astronomy/astrophysics, an
open-source Python-based shapelets software package would provide access to these functions
and their applications for a larger community, along with facilitating open-source scientific
software development through the existence of a centralized software package that allows for
contribution and collaboration.

Similarly, quantification of structure-property relationships for nanomaterials is critical for
continued progress in materials research (Abukhdeir, 2016; Tino et al., 2024). This is especially
true for nanomaterials with complex spatially-varying patterns, such as self-assembled materials
(Abukhdeir, 2016). There are other methods to quantify nanostructure order, such as bond-
orientational order analysis (Brock, 1992), but these methods do not provide pixel-scale
information and do not have readily available open-source software implementations. Methods
to quantify nanostructure order, such as those implemented in the shapelets package, would
significantly advance (nano)materials research and provide researchers with accessible tools to
quantify order for their own material images.

The overall aim of the shapelets package is to address these needs through (1) providing
well-documented and accessible code for researchers interested in using these shapelet functions
and existing applications and (2) promoting open-source collaboration for future development
of shapelet-related research.

Features
The table below summarizes the different shapelet functions implemented in the shapelets

package.

Shapelet
Functions Description
Cartesian Cartesian shapelets (Refregier, 2003) via shapelets.functions.cartesian1D,

shapelets.functions.cartesian2D

Polar Polar shapelets (Massey & Refregier, 2005) via shapelets.functions.polar2D

Orthonor-
mal polar

Orthonormal polar shapelets with constant radial scale (Akdeniz et al., 2018)
via shapelets.functions.orthonormalpolar2D

Exponen-
tial

Exponential shapelets (Bergé et al., 2019) via
shapelets.functions.exponential1D,
shapelets.functions.exponential2D

The table below summarizes the specific shapelet applications implemented in this package.

Shapelet
Applications Description
Galaxy
decomposition

Galactic image decomposition & reconstruction (Refregier, 2003) via
shapelets.astronomy.decompose_galaxies

Response
distance

Response distance method for self-assembly microscopy imaging (Suderman
et al., 2015) via shapelets.self_assembly.rdistance

Orientation Local pattern orientation for self-assembly microscopy imaging (Tino et al.,
2024) via shapelets.self_assembly.orientation

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

2

https://www.astro.dur.ac.uk/~rjm/shapelets/code/index.php
https://www.astro.dur.ac.uk/~rjm/shapelets/code/index.php
https://doi.org/10.21105/joss.06058


Shapelet
Applications Description
Defect
identification

Defect identification method for self-assembly microscopy imaging (Tino et
al., 2024) via shapelets.self_assembly.defectid

More information, such as installation instructions and application-specific examples can be
found on the package website.

User Interface Methods
The shapelets Python package can be used in two different ways: text-based configuration
files and directly via interactive or script-based Python programming.

Understanding the Configuration File Method
The text-based user interface for shapelets is centered around configuration files and the CLI
(command line interface). Each use of the shapelets package (via configuration files) should
have a main directory (here called “shapelets_example”) with standard subdirectories and
required files as shown in Figure 1.

Figure 1: Sample directory hierarchy.

The main (shapelets_example/) directory contains the main configuration file (e.g., config)
which is a plain-text file specifying parameters or methods to be used. Acceptable parameters
and options for the configuration file can be found throughout the examples, depending on
the shapelet-based method being applied. The images/ subdirectory contains data for image
analysis and must be present. The output/ subdirectory is created by the shapelets software
and contains output data/images based on the analysis specified in the configuration file
(config).

Alternatively, the Python-based software interface of the shapelets package can be used either
interactively or via scripting through standard import of either shapelet function implementations
and/or application submodules.

Examples of Usage
For each example included in the package, implementations using both the configuration
file and programming-based interfaces are demonstrated. Several detailed image processing
examples were developed that demonstrate the use and capabilities of the shapelets package
for both astronomy and self-assembly related applications. See the package website for more
example details and documentation, and the package code for related files.

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

3

https://uw-comphys.github.io/shapelets
https://uw-comphys.github.io/shapelets
https://github.com/uw-comphys/shapelets
https://doi.org/10.21105/joss.06058


Examples 1-3 demonstrate use of the shapelets.self_assembly submodule, with specific
applications for the response distance method (Suderman et al., 2015), defect identification
method (Tino et al., 2024), and local pattern orientation (Tino et al., 2024) (respectively).

Example 4 demonstrates use of the shapelets.astronomy submodule for the decomposition
and reconstruction of galactic images (Refregier, 2003). All examples have instructions to
use the shapelets package either via configuration files or importing relevant submodules in
pre-configured .py files (scripting). Examples 1, 2, and 4 are shown here.

Example 1 - Response Distance Method
Example 1 demonstrates use of the shapelets.self_assembly submodule to compute the
response distance method (Suderman et al., 2015). This example uses a simulated stripe
self-assembled surface microscopy image (Suderman et al., 2015), shown in Figure 2.

Figure 2: Simulated stripe self-assembled nanostructured surface (Suderman et al., 2015).

Response Distance

The response distance (Suderman et al., 2015) is computed as

𝑑𝑖,𝑗 = min ‖�⃗� − ⃗𝑟𝑖,𝑗‖2

where ⃗𝑟𝑖,𝑗 denotes the given response vector at pixel location {𝑖, 𝑗} and �⃗� is the reference set
of response vectors.

Configuration file Method

The configuration file (config) contains the following information,

[general]

image_name = lamSIM1.png

method = response_distance

[response_distance]

shapelet_order = default

num_clusters = 20

ux = [50, 80]

uy = [150, 180]

where

• shapelet_order specifies the maximum shapelet order (𝑚′) to use for convolution
operations (i.e., 𝑚 = [1,𝑚′]) (Tino et al., 2024),

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

4

https://doi.org/10.21105/joss.06058


• num_clusters specifies the number of clusters required for k-means clustering (Wu,
2012), and

• [ux, uy ] specifies the coordinates of the user-defined reference subdomain required for
the response distance method (Suderman et al., 2015).

Note - the shapelet_order parameter in this example is based on the orthonormal polar shapelet
definition from Akdeniz et al. (2018).

Possible values for each parameter, including default values where applicable, are available in the
example documentation in the package website. To run this example, navigate to the directory
shapelets/examples/example_1. Then, execute shapelets config via the command line.
The output, shown in Figure 3, is created in shapelets/examples/example_1/output, and
contains the following two images corresponding to the response distance scalar field and the
superimposed field on the original image.

Figure 3: Response distance (left) superimposed onto Figure 2 (right).

Note - Typically, the user may not know the ux and uy parameters for the image when
computing the response distance for the first time. If this is the case, see the section “Selecting
subdomain bounds during runtime” in the Example 1 documentation.

Scripting Method

For users wishing to interact with the shapelets package programmatically, the example_1.py

file is provided and yields the same output as seen above without any code modifi-
cations needed. After executing example_1.py, the output (Figure 3) is created in
shapelets/examples/example_1/output.

Example 2 - Defect Identification Method
Example 2 demonstrates use of the shapelets.self_assembly submodule to execute defect
identification (Tino et al., 2024). This example uses a simulated hexagonal self-assembled
surface microscopy image (Suderman et al., 2015), shown in Figure 4.

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

5

https://doi.org/10.1088/1361-6528/aaf353
https://uw-comphys.github.io/shapelets
https://doi.org/10.21105/joss.06058


Figure 4: Simulated hexagonal self-assembled nanostructured surface (Suderman et al., 2015).

Defect Identification Method

The defect identification method (Tino et al., 2024) is a modification of the response distance
method (Suderman et al., 2015). The user is required to manually select clusters associated
with defects or defect structures, and the defect response distance is computed for each cluster.
The defect response distance is similar to the response distance, but the reference subdomain
is the centroid response vector of each cluster (and not a set of reference response vectors).
For example, given cluster 𝐶 with centroid 𝐶𝑐, the defect response distance is computed as

𝑑𝑖 = ‖𝐶𝑐 − 𝑐𝑖‖2
where 𝑐𝑖 is a cluster response vector belonging to the (k-means identified) cluster 𝐶 and is
computed for all response vectors in each cluster.

Configuration file Method

The configuration file (config) contains the following information,

[general]

image_name = hexSIM1.png

method = identify_defects

[identify_defects]

pattern_order = hexagonal

num_clusters = 10

where

• pattern_order specifies the dominant pattern symmetry in the image, and
• num_clusters specifies the number of clusters desired for k-means clustering (Wu, 2012).

Possible values for each parameter, including default values where applicable, are available in
the example documentation in the package website. To execute this example, navigate the
terminal directory to “shapelets/examples/example_2”. Then, execute shapelets config via
the command line interface. The user will be required to select the clusters associated with
defects or defect structures during runtime. Details for this specific process can be found in
the example documentation in the package website.

The output, shown in Figure 5, is created in shapelets/examples/example_2/output, con-
taining four images corresponding to (1) the locations of each cluster within the image, (2)
radar chart representations of the centroid response vectors from k-means clustering (Wu,
2012), (3) the defect response distance scalar field, and (4) the defect response distance scalar
field superimposed onto the original image.

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

6

https://uw-comphys.github.io/shapelets
https://uw-comphys.github.io/shapelets
https://doi.org/10.21105/joss.06058


Figure 5: Defect identification method (Tino et al., 2024) applied to Figure 4.

Scripting Method

For users wishing to interact with the shapelets package programmatically, the example_2.py

file is provided and yields the same output as seen above without any code modifi-
cations needed. After executing example_2.py, the output (Figure 5) is created in
shapelets/examples/example_2/output.

Example 4 - Galactic Image Decomposition & Reconstruction
Example 4 demonstrates use of the shapelets.astronomy submodule to decompose a collection
of images of galaxies into a linear combination of shapelet functions. This example uses a
subset of images of galaxies from the Hubble Deep Field North (Refregier, 2003), shown in
Figure 6.

Figure 6: Galaxy image subset for analysis: linear (left) and mean normalized (right) greyscale images.

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

7

https://doi.org/10.21105/joss.06058


Galaxy Decomposition

The galaxy decomposition method is based on the properties of cartesian shapelet functions
(Refregier, 2003), where any (image) function can be represented (or approximated) as a
sum of scaled shapelet functions. In this example, the astronomical intensity/pixel data is
stored using the flexible image transport system (FITS) file format, designed to standarize
the exchange of astronomical image data between observatories. These intesities represent
localized celestial objects (such as galaxies) that, once separated from the surrounding image,
are decomposed into a linear combination of shapelet functions.

Configuration file Method

The configuration file (config) contains the following information,

[general]

fits_name = galaxies.fits

method = galaxy_decompose

[galaxy_decompose]

shapelet_order = default

compression_order = 20

where

• shapelet_order specifies the maximum order of shapelets used in the decomposition, and
• compression_order specifies the number of significant shapelet coefficients used in the

final reconstruction.

Note - the shapelet_order parameter in this example is based on the cartesian shapelet definition
from Refregier et al. (2003).

Possible values for each parameter, including default values where applicable, are available
in the example documentation in the package website. To execute this example, navigate
to the directory shapelets/examples/example_4. Then, execute shapelets config via the
command line interface.

The output, shown in Figure 7, is created in shapelets/examples/example_4/output, contain-
ing two types of images corresponding to (1) the locations of galaxies highlighted on the linear
and mean normalized image, and (2) images containing information about each decomposed
galaxy. These images include: the subdomain of the original image, reconstructions of the
galaxy using all calculated coefficients and a compressed set of coefficients, and the compressed
reconstruction relative error.

Figure 7: Galaxy map (left) and decomposed galaxy example (right).

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

8

https://doi.org/10.1046/j.1365-8711.2003.05901.x
https://uw-comphys.github.io/shapelets
https://doi.org/10.21105/joss.06058


Scripting Method

For users wishing to interact with the shapelets package programmatically, the example_4.py

file is provided to yield the same output as seen above without any code modifi-
cations needed. After executing example_4.py, the output (Figure 7) is created in
shapelets/examples/example_4/output.

Acknowledgements
This research was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the Digital Research Alliance of Canada.

References
Abukhdeir, N. M. (2016). Computational characterization of ordered nanostructured surfaces.

Materials Research Express, 3(8), 082001. https://doi.org/10.1088/2053-1591/3/8/
082001

Akdeniz, T. J., Lizotte, D. J., & Abukhdeir, N. M. (2018). A generalized shapelet-based
method for analysis of nanostructured surface imaging. Nanotechnology, 30(7), 075703.
https://doi.org/10.1088/1361-6528/aaf353

Bergé, J., Massey, R., Baghi, Q., & Touboul, P. (2019). Exponential shapelets: Basis functions
for data analysis of isolated features. Monthly Notices of the Royal Astronomical Society,
486(1), 544–559. https://doi.org/10.1093/mnras/stz787

Birrer, S., Amara, A., & Refregier, A. (2015). Gravitational lens modeling with basis sets. The
Astrophysical Journal, 813(2), 102. https://doi.org/10.1088/0004-637x/813/2/102

Brock, J. D. (1992). Bond-orientational order. In Bond-orientational order in condensed
matter systems (pp. 1–31). Springer. https://doi.org/10.1007/978-1-4612-2812-7_1

Desvignes, G., Caballero, R., Lentati, L., Verbiest, J., Champion, D., Stappers, B., Janssen,
G., Lazarus, P., Osłowski, S., Babak, S., & others. (2016). High-precision timing of 42
millisecond pulsars with the european pulsar timing array. Monthly Notices of the Royal
Astronomical Society, 458(3), 3341–3380. https://doi.org/10.1093/mnras/stw483

Lentati, L., Alexander, P., & Hobson, M. (2015). Generative pulsar timing analysis. Monthly
Notices of the Royal Astronomical Society, 447 (3), 2159–2168. https://doi.org/10.1093/
mnras/stu2611

Massey, R., & Refregier, A. (2005). Polar shapelets. Monthly Notices of the Royal Astronomical
Society, 363(1), 197–210. https://doi.org/10.1111/j.1365-2966.2005.09453.x

Refregier, A. (2003). Shapelets—i. A method for image analysis. Monthly Notices of the Royal
Astronomical Society, 338(1), 35–47. https://doi.org/10.1046/j.1365-8711.2003.05901.x

Sharpee, T. O., & Victor, J. D. (2009). Contextual modulation of V1 receptive fields
depends on their spatial symmetry. Journal of Computational Neuroscience, 26, 203–218.
https://doi.org/10.1007/s10827-008-0107-5

Suderman, R., Lizotte, D. J., & Abukhdeir, N. M. (2015). Theory and application of shapelets
to the analysis of surface self-assembly imaging. Physical Review E, 91(3), 033307.
https://doi.org/10.1103/physreve.91.033307

Tino, M. P., Suderman, R., & Abukhdeir, N. M. (2024). Shapelet-based orientation and
defect identification method for nanostructured surface imaging. Nanotechnology, 35(16),
165705. https://doi.org/10.1088/1361-6528/ad1df4

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

9

https://doi.org/10.1088/2053-1591/3/8/082001
https://doi.org/10.1088/2053-1591/3/8/082001
https://doi.org/10.1088/1361-6528/aaf353
https://doi.org/10.1093/mnras/stz787
https://doi.org/10.1088/0004-637x/813/2/102
https://doi.org/10.1007/978-1-4612-2812-7_1
https://doi.org/10.1093/mnras/stw483
https://doi.org/10.1093/mnras/stu2611
https://doi.org/10.1093/mnras/stu2611
https://doi.org/10.1111/j.1365-2966.2005.09453.x
https://doi.org/10.1046/j.1365-8711.2003.05901.x
https://doi.org/10.1007/s10827-008-0107-5
https://doi.org/10.1103/physreve.91.033307
https://doi.org/10.1088/1361-6528/ad1df4
https://doi.org/10.21105/joss.06058


Victor, J. D., Mechler, F., Repucci, M. A., Purpura, K. P., & Sharpee, T. (2006). Responses
of V1 neurons to two-dimensional hermite functions. Journal of Neurophysiology, 95(1),
379–400. https://doi.org/10.1152/jn.00498.2005

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Weissman, J., Hancewicz, T., & Kaplan, P. (2004). Optical coherence tomography of skin
for measurement of epidermal thickness by shapelet-based image analysis. Optics Express,
12(23), 5760–5769. https://doi.org/10.1364/opex.12.005760

Wu, J. (2012). Advances in k-means clustering: A data mining thinking. Springer Science &
Business Media. https://doi.org/10.1007/978-3-642-29807-3

Tino et al. (2024). Shapelets: A Python package implementing shapelet functions and their applications. Journal of Open Source Software, 9(95),
6058. https://doi.org/10.21105/joss.06058.

10

https://doi.org/10.1152/jn.00498.2005
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1364/opex.12.005760
https://doi.org/10.1007/978-3-642-29807-3
https://doi.org/10.21105/joss.06058

	Summary
	Statement of Need
	Features
	User Interface Methods
	Understanding the Configuration File Method

	Examples of Usage
	Example 1 - Response Distance Method
	Response Distance
	Configuration file Method
	Scripting Method

	Example 2 - Defect Identification Method
	Defect Identification Method
	Configuration file Method
	Scripting Method

	Example 4 - Galactic Image Decomposition & Reconstruction
	Galaxy Decomposition
	Configuration file Method
	Scripting Method


	Acknowledgements
	References

