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Summary
Acanthophis is a comprehensive pipeline for the joint analysis of both host genetic variation
and variation in the composition and abundance of host-associated microbiomes (together,
the “hologenome”). Implemented in Snakemake (Köster & Rahmann, 2012), Acanthophis
handles data from raw FASTQ read files through quality control, alignment of the reads to a
plant reference, variant calling, taxonomic classification and quantification of microbes, and
metagenome analysis. The workflow contains numerous practical optimisations, both to reduce
disk space usage and maximise utilisation of computational resources. Acanthophis is available
under the Mozilla Public Licence v2 at https://github.com/kdm9/Acanthophis as a python
package installable from conda or PyPI (pip install acanthophis).

Statement of Need
Understanding plant biology benefits from ecosystem-scale analysis of genetic variation, and
increasingly demands the characterisation of not only plant genomes but also the genomes
of their associated microbes. Such analyses are often data intensive, particularly at the scale
required for quantitative analyses, i.e. hundreds to thousands of samples (Regalado et al.,
2020). They demand computationally-efficient pipelines that perform both host genotyping
and host-associated microbiome characterisation in a consistent, flexible, and reproducible
fashion.

Currently, no such unified pipelines exist. Previous pipelines perform only a subset of these
tasks (e.g. Snakemake’s variant calling pipeline; Köster et al. (2021)). In addition, most
host-aware microbiome analysis pipelines do not allow for genotyping and/or assume an animal
host (e.g. Taxprofiler; Yates et al. (2023)). Acanthophis has attracted many users, and has
been used in peer-reviewed journal articles and preprints (e.g. Murray et al. (2019); Ahrens et
al. (2021)).

Components and Features
Acanthophis is a pipeline for the analysis of plant population resequencing data. It expects
short-read shotgun whole (meta-)genome sequencing data, typically of plants collected in
the field (nothing fundamentally prevents Acanthophis operating on long-read data, however
additional tools would need to be incorporated, which will happen given sufficient user demand).
A typical dataset might be 10s-1000s of samples from one or multiple closely related species,
sequenced with 2x150bp paired-end short read sequencing. In a plant-microbe interaction
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genomics study, these plants and therefore sequencing libraries can contain microbial DNA
(a “hologenome”), but datasets focusing only on host genome variation are also possible.
Acanthophis can be configured to do any of the following analyses: mapping reads to a
reference, calling variants, annotating variant effects, estimating genetic distances directly
from sequence reads (de novo), and profiling and/or assembling metagenomes. While we
developed Acanthophis to handle plant data, there is no reason why it cannot be applied
to other taxa, although some parameters may need adjustment (see below). Philosophically,
Acanthophis aims for maximum efficiency and flexibility, and therefore does not bake any
particular biological question into its outputs. As such, each user should for example filter the
resulting variant files as appropriate for their biological question(s), and likewise apply other
post-processing as needed.

Across the entire pipeline, Acanthophis operates on ‘sample sets’, named groups of one or more
samples, and each sample can be in any number of sample sets. The pipeline is configured via
a global config.yaml file, in which one can configure the pipeline per sample-set. This way,
one can configure the analyses to be run (most of the below analysis stages can be skipped if
not needed), as well as tool-specific settings or thresholds. We provide a documented template
as well as a reproducible workflow to simulate test data, which can be used as a basis for
customisation. While Acanthophis is cross-platform, most of the underlying tools are only
packaged for and/or only operate on GNU/Linux operating systems. Therefore, Acanthophis
is only actively supported for users on Linux systems.

Stage 1: Raw reads to per-sample reads
Input data consists of FASTQ files per run of each library corresponding to a sample. For each
run of each library, Acanthophis uses AdapterRemoval (Schubert et al., 2016) to remove low
quality and adapter sequences, and optionally to merge overlapping read pairs. It then uses
FastQC to summarise sequence QC before and after AdapterRemoval.

Stage 2: Alignment to reference(s)
To align reads to reference genomes, Acanthophis can use any of BWA MEM (Li, 2013), NGM
(Sedlazeck et al., 2013), and minimap2 (Li, 2018, 2021). Then, Acanthophis merges per-runlib
BAMs to per-sample BAMs, and uses samtools markdup (Danecek et al., 2021; Li et al.,
2009) to mark duplicate reads. Input reference genomes should be uncompressed, samtools
faidxed FASTA files.

Stage 3: Variant Calling
Acanthophis uses bcftools mpileup and/or freebayes to call raw variants, using priors and
thresholds configurable for each sample set. It then normalises variants with bcftools norm,
splits multi-allelic variants, filters each allele with per-sample set filters, and combines filter-
passing bialelic sites back into single multi-allelic sites, merges region-level VCFs, indexes, and
calculates statistics on these final VCF files. Acanthophis provides two alternative approaches
to parallelise variant calling: either a static list of non-overlapping genome windows (supplied in
a BED file), or genome bins with approximately equal amounts of data, which are automatically
generated using mosdepth (Pedersen & Quinlan, 2018).

Stage 4: Taxon profiling
Acanthophis can create taxonomic profiles of each sample with reference to either public
sequence databases (e.g. NCBI’s nt or refseq), or user-supplied databases. Acanthophis can
utilise any of Kraken 2 (Wood et al., 2019), Bracken (Lu et al., 2017), Kaiju (Menzel et
al., 2016), Centrifuge (Kim et al., 2016), and Diamond (Buchfink et al., 2021) to create
taxonomic profiles for each sample against any number of taxon identification databases; most
tools supply pre-computed indices for public databases. Acanthophis can then optionally use
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taxpasta (Beber et al., 2023) to merge multiple profiles into a single combined table for easy
downstream use.

Stage 5: De novo Estimates of Genetic Dissimilarity
Acanthophis can use either kWIP (Murray et al., 2017) or Mash (Ondov et al., 2016) to estimate
genetic distances between samples without alignment to a reference genome. These features
first count reads into k-mer sketches, and then calculate pairwise distances among samples.

Stage 6: Reporting and Statistics
Throughout all pipeline stages, various tools output summaries of their actions and/or outputs.
We optionally combine these into unified reports by pipeline stage and sample set using
MultiQC (Ewels et al., 2016), allowing plotting of raw sequence QC statistics, alignment QC
statistics, variant QC statistics, and summarisation of taxonomic identification analyses.
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