
scida: scalable analysis for scientific big data
Chris Byrohl 1 and Dylan Nelson 1

1 Heidelberg University, Institute for Theoretical Astronomy, Albert-Ueberle-Str. 2, 69120 Heideberg,
Germany

DOI: 10.21105/joss.06064

Software
• Review
• Repository
• Archive

Editor: Monica Bobra
Reviewers:

• @egaraldi
• @kyleaoman

Submitted: 09 October 2023
Published: 28 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
scida is a Python package for reading and analyzing large scientific data sets. Data access is
provided through a hierarchical dictionary-like data structure after a simple load() function.
Using the dask library for scalable, parallel and out-of-core computation (Dask Development
Team, 2016), all computation requests from a user session are first collected in a task graph.
Arbitrary custom analysis, as well as all available dask (array) operations, can be performed.
The subsequent computation is executed only upon request, on a target resource (e.g. a HPC
cluster, see Figure 1).

 

 



1. computa�on request 3. result2. computa�on

notebook

HPC

cloud

ds = scida.load(...)
A = ds.data["A"]
B = ds.data["B"]
task = hist2d(A, B)
res = task.compute()

ds
.d

at
a

graph representa�on

A
B

data representa�on
field A

field B
group 1

field X
field Y

A
B





Figure 1: Schematic of the workflow. In a user session, a recipe (i.e. sequence of analysis operations) for
desired data product can be built by consecutive chaining of operations, which are internally represented
by dask task graphs. Calculation is triggered by the compute() command, evaluating the graph on a
target resource. The result, much smaller than the original data, is sent back to the user session for
further analysis/plotting.

Features
Scida begins by providing a clean, abstract, dictionary-like interface to the underlying data,
regardless of its file format or structure on disk. Physical units are automatically inferred, when
possible, and attached to the dataset. Symbolic and automatic unit conversion is provided by
the pint package (Grecco & others, 2012). This metadata can also be specified by the user via
customizable configuration files.

Scida attempts to automatically determine the type of dataset loaded. At the file level, it
currently supports zarr, single/multi-file HDF5 and FITS files. The analysis functionality then
available depends on the dataset type. For example:

• Datasets which pair scattered pointsets with cataloged results of clustering algorithms
have a natural association between such groups and their member points. Cosmological
simulations in astrophysics provide one such motivating example, where halos and galaxies
are identified in particle data. Scida then supports broadcasting of analysis and reduction
operations over all groups for the associated particles.

Byrohl, & Nelson. (2024). scida: scalable analysis for scientific big data. Journal of Open Source Software, 9(94), 6064. https://doi.org/10.21105/
joss.06064.

1

https://orcid.org/0000-0002-0885-8090
https://orcid.org/0000-0001-8421-5890
https://doi.org/10.21105/joss.06064
https://github.com/openjournals/joss-reviews/issues/6064
https://github.com/cbyrohl/scida
https://doi.org/10.5281/zenodo.10681463
https://mbobra.github.io
https://orcid.org/0000-0002-5662-9604
https://github.com/egaraldi
https://github.com/kyleaoman
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06064
https://doi.org/10.21105/joss.06064


• Datasets containing spatial coordinates in one, two, or three dimensions can be queried
for spatial subsets.

• Datasets which are comprised of series, e.g. snapshots at different times, or parameter
variation suites, are automatically inferred and supported.

The dataset-dependent functionality of scida is handled with a flexible and extensible mixin
architecture.

Statement of need
Today, scientific “big data” is petabyte-scale. This makes traditional analysis by a researcher on
their personal computer prohibitive. Writing analysis code which is distributed or out-of-core
is complex, and is not the main focus of scientists. The need for significant data management
creates (i) a barrier for new researchers, (ii) a substantial time commitment apart from the
science itself, and (iii) an increased risk of errors and difficulties in reproducibility due to higher
code complexity, while (iv) workflows are often not easily transferable to other datasets, nor
(v) scalable and transferable to changing computing resources.

scida solves these problems by providing a simple interface to large datasets, hiding the
complexity of the underlying data format and file structures, and transparently handling the
parallelization of analysis computations. This is facilitated by the dask library, which naturally
separates the definition of a given computation from its execution.

Initial support in scida is focused on astrophysical simulations and observations, but the package
is designed to be easily extensible to other scientific domains. Existing analysis frameworks
for astrophysical simulations include python packages such as yt (Turk et al., 2011), pynbody
(Pontzen et al., 2013), pygad (Röttgers, 2018), nbodykit (Hand et al., 2018) and swiftsimio
(Borrow & Kelly, 2021). None utilize the graph-based distributed analysis framework of dask.
Often, existing analysis packages rely on the explicit loading of entire datasets into main
memory. However, this approach is not transparently scalable to large data sets, and requires
the user to explicitly manage the data chunks in custom analysis routines.

By providing a flexible interface to the dask library to handle large data sets in a scalable
fashion, users can also leverage dask functionality and dask-based libraries such as dask-image
(Kirkham & others, 2018) and datashader (Bednar et al., 2022).

scida was first utilized in Byrohl & Nelson (2023) for the analysis of cosmological and radiative
transfer simulations, particularly the reduced chi-squared analysis exploring thousands of
terabyte-sized models.

Target Audience
scida aims to simplify access to large scientific data sets. It lowers the barrier of entry for
researchers to ask complex questions of big data. As such, the scida package is targeted at
researchers with large data analysis problems. Its clean interface is appropriate for users with
no prior experience with big data or distributed data analysis, as well as those who specifically
want to leverage dask to make their workflows easier to read and scalable.

Domain specific analysis routines can be implemented on top of scida. Initial “out of the box”
data support is currently focused on astrophysical data sets, but scida aims to support other
scientific domains as well, where similar solutions will be beneficial.

Acknowledgements
CB and DN acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) through
an Emmy Noether Research Group (grant number NE 2441/1-1).

Byrohl, & Nelson. (2024). scida: scalable analysis for scientific big data. Journal of Open Source Software, 9(94), 6064. https://doi.org/10.21105/
joss.06064.

2

https://doi.org/10.21105/joss.06064
https://doi.org/10.21105/joss.06064


References
Bednar, J. A., Crail, J., Crist-Harif, J., Rudiger, P., Brener, G., B, C., Thomas, I., Mease, J.,

Signell, J., Liquet, M., Stevens, J.-L., Collins, B., Thorve, A., Bird, S., thuydotm, esc,
kbowen, Abdennur, N., Smirnov, O., … Bourbeau, J. (2022). Holoviz/datashader: Version
0.14.3 (Version v0.14.3). Zenodo. https://doi.org/10.5281/zenodo.7331952

Borrow, J., & Kelly, A. J. (2021). Projecting SPH particles in adaptive environments. https:
//arxiv.org/abs/2106.05281

Byrohl, C., & Nelson, D. (2023). The cosmic web in Lyman-alpha emission. Monthly Notices of
the Royal Astronomical Society, 523, 5248–5273. https://doi.org/10.1093/mnras/stad1779

Dask Development Team. (2016). Dask: Library for dynamic task scheduling.

Grecco, H., & others. (2012). Pint: Makes units easy. In GitHub repository. GitHub.
https://github.com/hgrecco/pint

Hand, N., Feng, Y., Beutler, F., Li, Y., Modi, C., Seljak, U., & Slepian, Z. (2018). nbodykit:
An Open-source, Massively Parallel Toolkit for Large-scale Structure. 156(4), 160. https:
//doi.org/10.3847/1538-3881/aadae0

Kirkham, J., & others. (2018). Dask-image: Distributed image processing. GitHub Repository.
https://github.com/dask/dask-image

Pontzen, A., Roškar, R., Stinson, G. S., Woods, R., Reed, D. M., Coles, J., & Quinn, T. R.
(2013). pynbody: Astrophysics Simulation Analysis for Python.

Röttgers, B. (2018). pygad: Analyzing Gadget Simulations with Python (p. ascl:1811.014).
Astrophysics Source Code Library, record ascl:1811.014.

Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman, M.
L. (2011). yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The
Astrophysical Journal Supplement Series, 192, 9. https://doi.org/10.1088/0067-0049/
192/1/9

Byrohl, & Nelson. (2024). scida: scalable analysis for scientific big data. Journal of Open Source Software, 9(94), 6064. https://doi.org/10.21105/
joss.06064.

3

https://doi.org/10.5281/zenodo.7331952
https://arxiv.org/abs/2106.05281
https://arxiv.org/abs/2106.05281
https://doi.org/10.1093/mnras/stad1779
https://github.com/hgrecco/pint
https://doi.org/10.3847/1538-3881/aadae0
https://doi.org/10.3847/1538-3881/aadae0
https://github.com/dask/dask-image
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.21105/joss.06064
https://doi.org/10.21105/joss.06064

	Summary
	Features
	Statement of need
	Target Audience
	Acknowledgements
	References

