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Introduction
Community detection methods help uncover the meso-scale structure of networks and have
broad applications (Dey et al., 2022; Haggerty et al., 2013; Karatas & Sahin, 2018; Waltman
& van Eck, 2012). While communities can be defined in different ways (Coscia et al., 2011), a
common expectation is one of greater edge-density within and lesser edge density between
communities (Fortunato & Newman, 2022). A related expectation is that communities also
should be well-connected (Bonchi et al., 2021; Traag et al., 2019), which is defined by the size
of the minimum edge cut. Applying a mild standard for well-connectedness, we have previously
demonstrated that several implementations of community finding algorithms do not generate
well-connected clusters (Park et al., 2023).

In Park et al. (2023), we describe Connectivity Modifier (CM), a meta-method that enforces
well-connectedness in communities. As input, CM takes a network, a clustering of the network
generated by an algorithm, and a user-specified connectivity threshold. For each community
(cluster), CM uses VieCut (Henzinger et al., 2018) to find a small edge cut, and if the edge cut
size is below the specified connectivity threshold, then the cut is removed, and the partitions
are reclustered using the clustering algorithm. This process repeats until all clusters are well
connected.

We now present CM++ (Ramavarapu et al., 2024), which uses parallelism for scalability and
has new features. CM++ provides support for additional clustering paradigms and is designed
to be extensible by other developers. Concurrently, we present the CM++ Pipeline, a modular
and extensible workflow that automates CM++ operations. The pipeline consists of clustering,
pre-processing, connectivity modifier (CM++), and post-processing stages with generation of
cluster statistics.

Statement of Need
Previously, we have demonstrated that several implementations of community finding algorithms,
e.g., MCL (Van Dongen, 2008), Infomap (Rosvall & Bergstrom, 2008), Leiden (Traag et al.,
2019), and IKC (Wedell et al., 2022) generate, to varying extents, clusters that fail to satisfy a
mild condition for well-connectedness (see Figure 2 of Park et al., 2023). A tool to enforce
user-specified levels of well-connectedness to clusterings from multiple community detection
methods is not presently available.
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Figure 1: (Top) A visualization of a workflow created from the CM++ Pipeline. (Bottom right)
Algorithmic schematic of CM++. CM++ splits the queue of clusters evenly between the spawned
processes. Each process runs an instance of CM++ on its share of clusters (recursive mincutting and
reclustering until well connected). (Bottom left) Runtime curve with respect to the number of parallel
cores running CM++. CEN (14 million nodes, 1.3 billion edges) is the Curated Exosome Network. orkut
(3.1 million nodes, 117 million edges) and cit_patents (3.7 million nodes, 16 million edges) are both
from the SNAP database (Leskovec & Krevl, 2014) and processed through the removal of parallel edges
and self-loops (Park et al., 2023).

CM++: Enforcing Well-Connectedness
CM++ is a meta-method designed to modify an existing network clustering, ensuring that
each cluster achieves connectivity values above a user-defined threshold. Key Features:

• Flexibility: For users to accompany their definition of a good community with well-
connectedness, CM++ is designed to work with any clustering algorithm and presently
provides built-in support for the Leiden algorithm (optimizing either the Constant Potts
Model or modularity), Iterative K-core Clustering (IKC), Markov Clustering (MCL) and
Infomap.

• Dynamic Thresholding: In order to allow the enforcement of connectivity to be flexible,
connectivity thresholds can be constants, or functions of the number of nodes in the
cluster, or the minimum node degree of the cluster.

• Multi-processing: For better performance, users can specify a larger number of cores to
process clusters concurrently.

Example Commands
• python3 -m hm01.cm -i network.tsv -e clustering.tsv -o output.tsv -c

leiden -g 0.5 --threshold 1log10 --nprocs 4 --quiet

• python3 -m hm01.cm -i network.tsv -e clustering.tsv -o output.tsv -c ikc

-k 10 --threshold 1log10 --nprocs 4 --quiet

These commands run on Leiden with resolution 0.5 and IKC with k-core value 10 clusterings
respectively. They both use four cores and set a dynamic threshold of 𝑙𝑜𝑔10(𝑛) where every
cluster with a minimum cut above the base-10 logarithm of the number of nodes is considered
“well-connected”.
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CM++ Pipeline: A Flexible and User-Friendly Community De-
tection Pipeline
The CM Pipeline is a modular pipeline for community detection, containing functions that can
be reordered and modified. Key Features:

• Graph Cleaning: Removal of parallel and duplicate edges as well as self loops.
• Community Detection: Clusters an input network with one of Leiden, IKC, MCL, and

InfoMap.
• Cluster Filtration: A pre-processing stage that allows users to filter out clusters that are

trees or have size below a given threshold.
• Community Statistics Reporting: Generates node and edge count, modularity score,

Constant Potts Model score, conductance, and edge-connectivity at multiple stages.
• Extensibility: Developers can remove stages and design new ones.

Limitations
The current version of CM++ offers a limited range of built-in clustering options, but is
designed to simplify extension by other developers. With IKC, CM++ has failed to complete
on clusters on the order of a million nodes due to very high memory usage. CM++ is limited
to community detection algorithms that yield disjoint communities, so algorithms that yield
overlapping communities are not supported by CM++.

In its current form, CM++ distributes the input clusters roughly equally across available cores.
Each core runs an instance of CM++, and outputs are aggregated at the end. This strategy
may suffer from load balancing issues if there are large outliers in cluster size. A version is
being developed that uses a shared memory queue of clusters that each core can fetch from.

Conclusions
CM++ offers performant improvements over its predecessor CM. The accompanying pipeline
provides additional functionality and is customizable, allowing users to re-order modules and
add custom modules.
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