
CM++ - A Meta-method for Well-Connected
Community Detection
Vikram Ramavarapu 1, Fábio Jose Ayres 2, Minhyuk Park 1, Vidya
Kamath Pailodi 1, João Alfredo Cardoso Lamy 2, Tandy Warnow 1, and
George Chacko 1¶

1 Department of Computer Science, University of Illinois Urbana-Champaign, IL 61801, USA 2 Insper
Institute, Sao Paulo, Brazil ¶ Corresponding author

DOI: 10.21105/joss.06073

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @LuisScoccola
• @chryswoods

Submitted: 29 October 2023
Published: 19 January 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Introduction
Community detection methods help uncover the meso-scale structure of networks and have
broad applications (Dey et al., 2022; Haggerty et al., 2013; Karatas & Sahin, 2018; Waltman
& van Eck, 2012). While communities can be defined in different ways (Coscia et al., 2011), a
common expectation is one of greater edge-density within and lesser edge density between
communities (Fortunato & Newman, 2022). A related expectation is that communities also
should be well-connected (Bonchi et al., 2021; Traag et al., 2019), which is defined by the size
of the minimum edge cut. Applying a mild standard for well-connectedness, we have previously
demonstrated that several implementations of community finding algorithms do not generate
well-connected clusters (Park et al., 2023).

In Park et al. (2023), we describe Connectivity Modifier (CM), a meta-method that enforces
well-connectedness in communities. As input, CM takes a network, a clustering of the network
generated by an algorithm, and a user-specified connectivity threshold. For each community
(cluster), CM uses VieCut (Henzinger et al., 2018) to find a small edge cut, and if the edge cut
size is below the specified connectivity threshold, then the cut is removed, and the partitions
are reclustered using the clustering algorithm. This process repeats until all clusters are well
connected.

We now present CM++ (Ramavarapu et al., 2024), which uses parallelism for scalability and
has new features. CM++ provides support for additional clustering paradigms and is designed
to be extensible by other developers. Concurrently, we present the CM++ Pipeline, a modular
and extensible workflow that automates CM++ operations. The pipeline consists of clustering,
pre-processing, connectivity modifier (CM++), and post-processing stages with generation of
cluster statistics.

Statement of Need
Previously, we have demonstrated that several implementations of community finding algorithms,
e.g., MCL (Van Dongen, 2008), Infomap (Rosvall & Bergstrom, 2008), Leiden (Traag et al.,
2019), and IKC (Wedell et al., 2022) generate, to varying extents, clusters that fail to satisfy a
mild condition for well-connectedness (see Figure 2 of Park et al., 2023). A tool to enforce
user-specified levels of well-connectedness to clusterings from multiple community detection
methods is not presently available.

Ramavarapu et al. (2024). CM++ - A Meta-method for Well-Connected Community Detection. Journal of Open Source Software, 9(93), 6073.
https://doi.org/10.21105/joss.06073.

1

https://orcid.org/0009-0001-8875-7213
https://orcid.org/0009-0000-6821-4687
https://orcid.org/0000-0002-8676-7565
https://orcid.org/0009-0000-0987-5901
https://orcid.org/0009-0005-4744-4754
https://orcid.org/0000-0001-7717-3514
https://orcid.org/0000-0002-2127-1892
https://doi.org/10.21105/joss.06073
https://github.com/openjournals/joss-reviews/issues/6073
https://github.com/illinois-or-research-analytics/cm_pipeline.git
https://doi.org/10.5281/zenodo.10501118
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/LuisScoccola
https://github.com/chryswoods
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06073


Figure 1: (Top) A visualization of a workflow created from the CM++ Pipeline. (Bottom right)
Algorithmic schematic of CM++. CM++ splits the queue of clusters evenly between the spawned
processes. Each process runs an instance of CM++ on its share of clusters (recursive mincutting and
reclustering until well connected). (Bottom left) Runtime curve with respect to the number of parallel
cores running CM++. CEN (14 million nodes, 1.3 billion edges) is the Curated Exosome Network. orkut
(3.1 million nodes, 117 million edges) and cit_patents (3.7 million nodes, 16 million edges) are both
from the SNAP database (Leskovec & Krevl, 2014) and processed through the removal of parallel edges
and self-loops (Park et al., 2023).

CM++: Enforcing Well-Connectedness
CM++ is a meta-method designed to modify an existing network clustering, ensuring that
each cluster achieves connectivity values above a user-defined threshold. Key Features:

• Flexibility: For users to accompany their definition of a good community with well-
connectedness, CM++ is designed to work with any clustering algorithm and presently
provides built-in support for the Leiden algorithm (optimizing either the Constant Potts
Model or modularity), Iterative K-core Clustering (IKC), Markov Clustering (MCL) and
Infomap.

• Dynamic Thresholding: In order to allow the enforcement of connectivity to be flexible,
connectivity thresholds can be constants, or functions of the number of nodes in the
cluster, or the minimum node degree of the cluster.

• Multi-processing: For better performance, users can specify a larger number of cores to
process clusters concurrently.

Example Commands
• python3 -m hm01.cm -i network.tsv -e clustering.tsv -o output.tsv -c

leiden -g 0.5 --threshold 1log10 --nprocs 4 --quiet

• python3 -m hm01.cm -i network.tsv -e clustering.tsv -o output.tsv -c ikc

-k 10 --threshold 1log10 --nprocs 4 --quiet

These commands run on Leiden with resolution 0.5 and IKC with k-core value 10 clusterings
respectively. They both use four cores and set a dynamic threshold of 𝑙𝑜𝑔10(𝑛) where every
cluster with a minimum cut above the base-10 logarithm of the number of nodes is considered
“well-connected”.

Ramavarapu et al. (2024). CM++ - A Meta-method for Well-Connected Community Detection. Journal of Open Source Software, 9(93), 6073.
https://doi.org/10.21105/joss.06073.

2

https://doi.org/10.21105/joss.06073


CM++ Pipeline: A Flexible and User-Friendly Community De-
tection Pipeline
The CM Pipeline is a modular pipeline for community detection, containing functions that can
be reordered and modified. Key Features:

• Graph Cleaning: Removal of parallel and duplicate edges as well as self loops.
• Community Detection: Clusters an input network with one of Leiden, IKC, MCL, and

InfoMap.
• Cluster Filtration: A pre-processing stage that allows users to filter out clusters that are

trees or have size below a given threshold.
• Community Statistics Reporting: Generates node and edge count, modularity score,

Constant Potts Model score, conductance, and edge-connectivity at multiple stages.
• Extensibility: Developers can remove stages and design new ones.

Limitations
The current version of CM++ offers a limited range of built-in clustering options, but is
designed to simplify extension by other developers. With IKC, CM++ has failed to complete
on clusters on the order of a million nodes due to very high memory usage. CM++ is limited
to community detection algorithms that yield disjoint communities, so algorithms that yield
overlapping communities are not supported by CM++.

In its current form, CM++ distributes the input clusters roughly equally across available cores.
Each core runs an instance of CM++, and outputs are aggregated at the end. This strategy
may suffer from load balancing issues if there are large outliers in cluster size. A version is
being developed that uses a shared memory queue of clusters that each core can fetch from.

Conclusions
CM++ offers performant improvements over its predecessor CM. The accompanying pipeline
provides additional functionality and is customizable, allowing users to re-order modules and
add custom modules.

Acknowledgements
This work was supported in part by the Insper-Illinois Collaboration and by Oracle Research
Awards to Tandy Warnow and George Chacko. The authors thank Nathan Bryans and Christine
Ballard from Oracle Research for their assistance with the Oracle Cloud Infrastructure.

References
Bonchi, F., García-Soriano, D., Miyauchi, A., & Tsourakakis, C. E. (2021). Finding densest

k-connected subgraphs. Discrete Applied Mathematics, 305, 34–47. https://doi.org/10.
1016/j.dam.2021.08.032

Coscia, M., Giannotti, F., & Pedreschi, D. (2011). A classification for community discovery
methods in complex networks. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 4(5), 512–546. https://doi.org/10.1002/sam.10133

Dey, A. K., Tian, Y., & Gel, Y. R. (2022). Community detection in complex networks: From
statistical foundations to data science applications. WIREs Computational Statistics, 14(2),
e1566. https://doi.org/10.1002/wics.1566

Ramavarapu et al. (2024). CM++ - A Meta-method for Well-Connected Community Detection. Journal of Open Source Software, 9(93), 6073.
https://doi.org/10.21105/joss.06073.

3

https://doi.org/10.1016/j.dam.2021.08.032
https://doi.org/10.1016/j.dam.2021.08.032
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/wics.1566
https://doi.org/10.21105/joss.06073


Fortunato, S., & Newman, M. E. J. (2022). 20 years of network community detection. Nature
Physics, 18(8), 848–850. https://doi.org/10.1038/s41567-022-01716-7

Haggerty, L. S., Jachiet, P.-A., Hanage, W. P., Fitzpatrick, D. A., Lopez, P., O’Connell, M. J.,
Pisani, D., Wilkinson, M., Bapteste, E., & McInerney, J. O. (2013). A pluralistic account
of homology: Adapting the models to the data. Molecular Biology and Evolution, 31(3),
501–516. https://doi.org/10.1093/molbev/mst228

Henzinger, M., Noe, A., Schulz, C., & Strash, D. (2018). Practical minimum cut algorithms.
ACM Journal of Experimental Algorithmics, 23.

Karatas, A., & Sahin, S. (2018, December). Application areas of community detection: A
review. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT). https://doi.org/10.1109/ibigdelft.2018.8625349

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data.

Park, M., Tabatabaee, Y., Ramavarapu, V., Liu, B., Pailodi, V. K., Ramachandran, R.,
Korobskiy, D., Ayres, F., Chacko, G., & Warnow, T. (2023). Well-connected communities
in real-world and synthetic networks. Proceedings of COMPLEX Networks 2023. https:
//arxiv.org/abs/2303.02813

Ramavarapu, V., Ayres, F. J., Park, M., P, V. K., Lamy, J. A. C., Warnow, T., & Chacko,
G. (2024). CM++ - A Meta-method for Well-Connected Community Detection (Version
v4.0.1). Zenodo. https://doi.org/10.5281/zenodo.10501118

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123.
https://doi.org/10.1073/pnas.0706851105

Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: Guaranteeing
well-connected communities. Scientific Reports, 9(1), 5233. https://doi.org/10.1038/
s41598-019-41695-z

Van Dongen, S. (2008). Graph clustering via a discrete uncoupling process. SIAM Journal on
Matrix Analysis and Applications, 30(1), 121–141. https://doi.org/10.1137/040608635

Waltman, L., & van Eck, N. J. (2012). A new methodology for constructing a publication-level
classification system of science. Journal of the American Society for Information Science
and Technology, 63(12), 2378–2392. https://doi.org/10.1002/asi.22748

Wedell, E., Park, M., Korobskiy, D., Warnow, T., & Chacko, G. (2022). Center–periphery
structure in research communities. Quantitative Science Studies, 3(1), 289–314. https:
//doi.org/10.1162/qss_a_00184

Ramavarapu et al. (2024). CM++ - A Meta-method for Well-Connected Community Detection. Journal of Open Source Software, 9(93), 6073.
https://doi.org/10.21105/joss.06073.

4

https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1093/molbev/mst228
https://doi.org/10.1109/ibigdelft.2018.8625349
http://snap.stanford.edu/data
https://arxiv.org/abs/2303.02813
https://arxiv.org/abs/2303.02813
https://doi.org/10.5281/zenodo.10501118
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1137/040608635
https://doi.org/10.1002/asi.22748
https://doi.org/10.1162/qss_a_00184
https://doi.org/10.1162/qss_a_00184
https://doi.org/10.21105/joss.06073

	Introduction
	Statement of Need
	CM++: Enforcing Well-Connectedness
	Example Commands

	CM++ Pipeline: A Flexible and User-Friendly Community Detection Pipeline
	Limitations
	Conclusions
	Acknowledgements
	References

