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Abstract
Most bioinformatics workflows consist of software components that are tightly coupled to
the logic of the workflow itself. This limits reusability of the individual components in the
workflow or introduces maintenance overhead when they need to be reimplemented in multiple
workflows. We introduce Viash, a tool for speeding up development of robust workflows through
“code-first” prototyping, separation of concerns and code generation of modular workflow
components. By decoupling the component functionality from the workflow logic, component
functionality becomes fully workflow-agnostic, and conversely the resulting workflows are
agnostic towards specific component requirements. This separation of concerns improves
reusability of components and facilitates multidisciplinary and pan-organisational collaborations.
It has been applied in a variety of projects, from proof-of-concept workflows to supporting an
international data science competition.

Viash is available as an open-source project at github.com/viash-io/viash and documentation
is available at viash.io.

Statement of Need
Recent developments in high-throughput RNA sequencing and imaging technologies allow
present-day biologists to observe single-cell characteristics in ever more detail (Luecken &
Theis, 2019). As the dataset size and the complexity of bioinformatics workflows increases, so
does the need for scalable and reproducible data science. In single cell biology, recent efforts
to standardise some of the most common single-cell analyses (Amezquita et al., 2019; Ewels
et al., 2020; Heumos et al., 2023) tackle these challenges by using a workflow framework (e.g.,
Snakemake, Nextflow), containerisation (e.g., Docker, Podman), and horizontal scaling in
cloud computing (e.g., Kubernetes, HPC).

Since research projects are increasingly more complex and interdisciplinary, researchers from
different fields and backgrounds are required to join forces. This implies that not all project
contributors can be experts in computer science. The chosen framework for such projects
therefore needs to have a low barrier to entry in order for contributors to be able to participate.
One common pitfall that greatly increases the barrier to entry is tightly coupling a workflow
and the components it consists of. Major drawbacks include lower transparency of the overall
workflow, limited reusability of workflow components, increased complexity, increased debugging
time, and a greater amount of time spent refactoring and maintaining boilerplate code. Non-
expert developers in particular will experience more arduous debugging sessions as they need

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

1

https://orcid.org/0000-0003-3641-729X
https://orcid.org/0000-0002-0032-6719
https://orcid.org/0000-0002-4389-0440
https://orcid.org/0009-0003-8555-1361
https://orcid.org/0009-0008-8793-4661
https://orcid.org/0000-0002-1314-3348
https://orcid.org/0000-0002-7007-6866
https://doi.org/10.21105/joss.06089
https://github.com/openjournals/joss-reviews/issues/6089
https://github.com/viash-io/viash
https://doi.org/10.5281/zenodo.10563479
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/wilkinson
https://github.com/abhishektiwari
https://github.com/mberacochea
https://creativecommons.org/licenses/by/4.0/
https://github.com/viash-io/viash
https://viash.io
https://doi.org/10.21105/joss.06089


to treat the workflow as a black box.

In this work we introduce Viash, a tool for speeding up workflow prototyping through code
generation, component modularity, and separation of concerns. With Viash, a user can
create a workflow module by writing a small script or using a pre-existing code block, add a
small amount of metadata, and use Viash to generate the boilerplate code needed to turn it
into a modular Nextflow component. This separates the component functionality from the
workflow logic, thereby allowing a component developer to focus on implementing the required
functionality using the domain-specific toolkit at hand while being completely agnostic to the
chosen workflow framework. Similarly, a workflow developer can design a workflow by chaining
together Viash modules while being completely agnostic to the scripting language used in the
component.

Core features and functionality
Viash is an open-source embodiment of a ‘code-first’ concept for workflow development.
Many bioinformatics research projects (and other software development projects) start with
prototyping functionality in small scripts or notebooks in order to then migrate the functionality
to software packages or workflow frameworks. By adding some metadata to a code block or
script (Figure 1A), Viash can turn a (small) code block into a highly malleable object. By
encapsulating core functionality in modular building blocks, one can use a Viash component
in a myriad of ways (Figure 1B-C): export it as a standalone command-line tool; create a
highly intuitive and modular Nextflow component; ensure reproducibility by building, pulling,
or pushing Docker containers; or run one or more unit tests to verify that the component works
as expected. Integration with CI tools such as GitHub Actions, Jenkins, or Travis CI allows for
automation of unit testing, rolling releases, and versioned releases.

The definition of a Viash component – a config and a code block – can be implemented quite
concisely (Figure 2 left). Viash currently supports different scripting languages, including Bash,
JavaScript, Python, and R. Through the use of several subcommands (Figure 2 right), Viash
can build the component into a standalone script using one of three backend platforms – native,
Docker, or Nextflow. Additional commands allow processing one or more Viash components
simultaneously, e.g., for executing a unit test suite or (re-)building component-specific Docker
images.
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Figure 1: Viash allows easy prototyping of reusable workflow components. A: Viash requires two main
inputs: a script (or code block) and a Viash config file. A Viash config file is a YAML file with metadata
describing the functionality provided by the component (e.g., a name and description of the component
and its parameters), and platform-specific metadata (e.g., the base Docker container to use, which
software packages are required by the component). Optionally, the quality of the component can be
improved by defining one or more unit tests with which the component functionality can be tested. B:
Viash allows transforming a given config to a variety of different outputs. C: Viash supports robust
workflow development by allowing users to build their component as a standalone executable (with
auto-generated CLI), build a Docker image to run the script inside, or turn the component into a
standalone Nextflow module or workflow. If unit tests were defined, Viash can also run all of the unit
tests and provide users with a report.

One major benefit of using code regeneration is that best practices in workflow development
can automatically be applied, whereas otherwise this would be left up to the developer to
develop and maintain. For instance, all standalone executables, Nextflow modules, and Docker
images are automatically versioned. When parsing command-line arguments, checking for the
availability of required parameters, the existence of required input files, or the type-checking of
command-line arguments is also automated. Another example is helper functions for installing
software through tools such as apt, apk, yum, pip, or R devtools, as these sometimes require
additional pre-install commands to update package registries or post-install commands to clean
up the installation cache to reduce image size of the resulting image. Here, Viash could be the
technical basis for a community of people committed to sharing components that everybody
can benefit from.
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Prototyping and testing
viash run config.vsh.yaml -- \
  --help

Display CLI help page.
(Auto-generated from config file)

viash run config.vsh.yaml -- \
  -i in.txt -o out.txt

Run a component.
(CLI auto-generated from config file)

viash run config.vsh.yaml \
  -p native -- <args>

Run a component natively.

viash run config.vsh.yaml \
  -p docker -- <args>

Run a component inside a Docker.
(Input files mounted automatically)

Building and deploying
viash build config.vsh.yaml \
  -p docker -o bin

Build a component into a
containerised standalone executable.

Show help page (same as above)

bin/method -i in.txt -o out.txt Run a component (same as above)

viash build config.vsh.yaml \
  -p nextflow -o modules

Build a component into a
standalone Nextflow module

Releasing and maintaining
viash ns build Build all components under src/

viash ns test Test all components under src/

bin/method --help

Developing modular pipeline components with Viash : : CHEAT SHEET

Common commands during the development cycleExample Viash config (config.vsh.yaml)

viash test config.vsh.yaml Run unit tests and display results.

viash run config.vsh.yaml \
  -p docker -- ---dockerfile

View the Dockerfile used by Viash to build
the Docker container.

viash run config.vsh.yaml \
  -p docker -- ---setup build

Rebuild a Docker container from scratch.

Docker-specific commands

functionality:
  name: mycomponent
  description: |
    A useful description of the functionality
    provided by this component.
  usage: mycomponent --input foo.txt --output bar.txt
  arguments:
    - name: "--input"
      alternatives: ["-i"]
      type: file
      description: Input text file.
    - name: "--output"         
      alternatives: ["-o"]
      type: file
      direction: output
  resources:
    - type: python_script
      path: script.py
  tests:
    - type: python_script
      path: test.py
platforms:
  - type: docker
    image: "python:3.8"
    setup: [...] # further customisation of container
  - type: native
  - type: nextflow

Example main script (script.py)
## VIASH START
# this codeblock is for debugging purposes and
# is removed by Viash at runtime.
par = {'input': 'debugging.txt', 'output': 'out.txt'}
## VIASH END

# do something with par dict
print(f"Input: {par['input']}")
print(f"Output: {par['output']}")

Viash
from scripts to pipelines

Figure 2: Cheat sheet for developing modular workflow components with Viash, including a sample Viash
component (left) and common commands used throughout the various stages of a development cycle
(right).

State of the field
The realm of bioinformatics workflow management is evolving rapidly, with numerous frame-
works and portability solutions emerging to address the escalating complexity and scale of
data processing (Wratten et al., 2021). Viash positions itself uniquely in this landscape as a
meta-framework, focusing on the creation of portable workflow modules.

Workflow frameworks can be broadly categorised into three broad categories: graphical,
programmatic, and specification-based types. Graphical workflow frameworks such as Galaxy
(Goecks et al., 2010) and KNIME (Fillbrunn et al., 2017) are user-friendly for non-coders, while
programmatic workflow frameworks such as Nextflow (Di Tommaso et al., 2017), Snakemake
(Köster & Rahmann, 2012), and WDL (https://openwdl.org) offer a DSL or programming
library for developers. Specification-based workflow frameworks such as CWL (Crusoe et
al., 2022) lie somewhere in between. These allow one to describe and execute workflows
with specification files (e.g., in YAML), and these specification files can be constructed using
graphical or programmatic interfaces.

Portability solutions are critical for ensuring reproducibility. These can be divided into package
managers like Conda for automated installation of versioned software, and containerization
tools like Docker (https://www.docker.com) and Podman (Heon et al., 2018), which package
and distribute software dependencies in a self-contained and platform-independent manner.

Viash’s role in this landscape is to bridge these diverse tools, enabling more efficient and
collaborative development in bioinformatics workflows.
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Applications in bioinformatics
Ultimately, Viash aims to support pan-organisational and interdisciplinary research projects by
simplifying collaborative development and maintenance of (complex) workflows. While Viash is
generally applicable to any field where scalable and reproducible data processing workflows are
needed, one field where it is particularly useful is in bioinformatics since it supports most of
the commonly used technologies in this field, namely Bash, Python, R, Docker, and Nextflow.

The NeurIPS2021 competition organised by OpenProblems demonstrates the practical value
of Viash (Luecken et al., 2021). As part of the preparation for the competition, a pilot
benchmark was implemented to evaluate and compare the performance of a few baseline
methods (Figure 3A). By pre-defining the input-output interfaces of several types of components
(e.g., dataset loaders, baseline methods, control methods, metrics), developers from different
organisations across the globe could easily contribute Viash components to the workflow
(Figure 3B). Since Viash automatically generates Docker containers and Nextflow workflows
from the metadata provided by component developers, developers could contribute components
whilst making use of their programming environment of choice without needing to have any
expert knowledge of Nextflow or Amazon EC2. Thanks to the modularity of Viash components,
the same components used in running a pilot benchmark are also used by the evaluation worker
of the competition website itself. As such, the pilot benchmark also serves as an integration
test of the evaluation worker.
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Figure 3: A recent NeurIPS competition for multimodal data integration (Luecken et al., 2021)
demonstrates the practical value of Viash by using Bash, R, Python, Docker, Nextflow, Viash, and
Amazon EC2 as core technologies to run a pilot benchmark. A: The pilot benchmark workflow consists of
several types of components, each of which had strict predefined input-output interfaces. B: Comparing
which organisations contributed one or more Viash components to the workflow demonstrates that Viash
allows multiple organisations to participate in developing a workflow collaboratively. Developers are
encouraged to implement components in their preferred scripting language. Thanks to the modularity
provided by Viash, sewing together multiple components into a Nextflow workflow can be left up to a few
developers, without requiring all collaborators to have expert knowledge regarding infrastructure-specific
technologies. Note: this visualisation pertains to one aspect of organising the NeurIPS competition, and
does not at all reflect the overall efforts made by any party.

Discussion
Viash is under active development. Active areas of development include expanded compatibility
between Viash and other technologies (i.e., additional scripting languages, containerisation
frameworks, and workflow frameworks), and ease-of-use functionality for developing and
managing large catalogues of Viash components (e.g., simplified continuous integration,
allowing project-wide settings, automating versioned releases).

We appreciate and encourage contributions to or extensions of Viash. All source code is
available under a GPL-3 licence on Github at github.com/viash-io/viash. Extensive user
documentation is available at viash.io. Requests for support or expanded functionality can be
addressed to the corresponding authors.
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