
Viash: A meta-framework for building reusable
workflow modules
Robrecht Cannoodt 1,2,3, Hendrik Cannoodt 1, Dries Schaumont 1, Kai
Waldrant 1, Eric Van de Kerckhove1, Andy Boschmans 1, Dries De
Maeyer 4, and Toni Verbeiren 1

1 Data Intuitive, Lebbeke, Belgium 2 Data Mining and Modelling for Biomedicine group, VIB Center for
Inflammation Research, Ghent, Belgium 3 Department of Applied Mathematics, Computer Science, and
Statistics, Ghent University, Ghent, Belgium 4 Discovery Technology and Molecular Pharmacology,
Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium

DOI: 10.21105/joss.06089

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @wilkinson
• @abhishektiwari
• @mberacochea

Submitted: 21 November 2023
Published: 24 January 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Abstract
Most bioinformatics workflows consist of software components that are tightly coupled to
the logic of the workflow itself. This limits reusability of the individual components in the
workflow or introduces maintenance overhead when they need to be reimplemented in multiple
workflows. We introduce Viash, a tool for speeding up development of robust workflows through
“code-first” prototyping, separation of concerns and code generation of modular workflow
components. By decoupling the component functionality from the workflow logic, component
functionality becomes fully workflow-agnostic, and conversely the resulting workflows are
agnostic towards specific component requirements. This separation of concerns improves
reusability of components and facilitates multidisciplinary and pan-organisational collaborations.
It has been applied in a variety of projects, from proof-of-concept workflows to supporting an
international data science competition.

Viash is available as an open-source project at github.com/viash-io/viash and documentation
is available at viash.io.

Statement of Need
Recent developments in high-throughput RNA sequencing and imaging technologies allow
present-day biologists to observe single-cell characteristics in ever more detail (Luecken &
Theis, 2019). As the dataset size and the complexity of bioinformatics workflows increases, so
does the need for scalable and reproducible data science. In single cell biology, recent efforts
to standardise some of the most common single-cell analyses (Amezquita et al., 2019; Ewels
et al., 2020; Heumos et al., 2023) tackle these challenges by using a workflow framework (e.g.,
Snakemake, Nextflow), containerisation (e.g., Docker, Podman), and horizontal scaling in
cloud computing (e.g., Kubernetes, HPC).

Since research projects are increasingly more complex and interdisciplinary, researchers from
different fields and backgrounds are required to join forces. This implies that not all project
contributors can be experts in computer science. The chosen framework for such projects
therefore needs to have a low barrier to entry in order for contributors to be able to participate.
One common pitfall that greatly increases the barrier to entry is tightly coupling a workflow
and the components it consists of. Major drawbacks include lower transparency of the overall
workflow, limited reusability of workflow components, increased complexity, increased debugging
time, and a greater amount of time spent refactoring and maintaining boilerplate code. Non-
expert developers in particular will experience more arduous debugging sessions as they need

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

1

https://orcid.org/0000-0003-3641-729X
https://orcid.org/0000-0002-0032-6719
https://orcid.org/0000-0002-4389-0440
https://orcid.org/0009-0003-8555-1361
https://orcid.org/0009-0008-8793-4661
https://orcid.org/0000-0002-1314-3348
https://orcid.org/0000-0002-7007-6866
https://doi.org/10.21105/joss.06089
https://github.com/openjournals/joss-reviews/issues/6089
https://github.com/viash-io/viash
https://doi.org/10.5281/zenodo.10563479
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/wilkinson
https://github.com/abhishektiwari
https://github.com/mberacochea
https://creativecommons.org/licenses/by/4.0/
https://github.com/viash-io/viash
https://viash.io
https://doi.org/10.21105/joss.06089

to treat the workflow as a black box.

In this work we introduce Viash, a tool for speeding up workflow prototyping through code
generation, component modularity, and separation of concerns. With Viash, a user can
create a workflow module by writing a small script or using a pre-existing code block, add a
small amount of metadata, and use Viash to generate the boilerplate code needed to turn it
into a modular Nextflow component. This separates the component functionality from the
workflow logic, thereby allowing a component developer to focus on implementing the required
functionality using the domain-specific toolkit at hand while being completely agnostic to the
chosen workflow framework. Similarly, a workflow developer can design a workflow by chaining
together Viash modules while being completely agnostic to the scripting language used in the
component.

Core features and functionality
Viash is an open-source embodiment of a ‘code-first’ concept for workflow development.
Many bioinformatics research projects (and other software development projects) start with
prototyping functionality in small scripts or notebooks in order to then migrate the functionality
to software packages or workflow frameworks. By adding some metadata to a code block or
script (Figure 1A), Viash can turn a (small) code block into a highly malleable object. By
encapsulating core functionality in modular building blocks, one can use a Viash component
in a myriad of ways (Figure 1B-C): export it as a standalone command-line tool; create a
highly intuitive and modular Nextflow component; ensure reproducibility by building, pulling,
or pushing Docker containers; or run one or more unit tests to verify that the component works
as expected. Integration with CI tools such as GitHub Actions, Jenkins, or Travis CI allows for
automation of unit testing, rolling releases, and versioned releases.

The definition of a Viash component – a config and a code block – can be implemented quite
concisely (Figure 2 left). Viash currently supports different scripting languages, including Bash,
JavaScript, Python, and R. Through the use of several subcommands (Figure 2 right), Viash
can build the component into a standalone script using one of three backend platforms – native,
Docker, or Nextflow. Additional commands allow processing one or more Viash components
simultaneously, e.g., for executing a unit test suite or (re-)building component-specific Docker
images.

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

2

https://doi.org/10.21105/joss.06089

Viash runtime

Outputs

Viash component

Script Unit test(s)Viash config

 • Functionality metadata
 - Component info
 - List of arguments
 - List of resources
 • Runner-specific metadata
 - Executable or Nextflow settings
 • Engine-specific metadata
 - Specify software dependencies

config.vsh.yaml

Build Nextflow
workflow

Run unit
test(s)

Build Docker
image

Test resultsNextflow workflowDocker image

 • Supports many scripting languages,
 E.g. Bash, Python, R, and JavaScript
 • Argument parser is auto-generated

 • Add one or more unit tests to a
 component
 • Unit test can be written in a different
 language
 • Unit tests can be shared across
 components

Build standalone
executable

Executable

 • CLI and --help are
 generated by Viash
 • Runs natively or inside
 Docker container

Software
dependencies
are translated
into a Dockerfile

Can be used as
a standalone
workflow or as
a dependency

A

B

C

Detect errors early
with continuous
integration

Figure 1: Viash allows easy prototyping of reusable workflow components. A: Viash requires two main
inputs: a script (or code block) and a Viash config file. A Viash config file is a YAML file with metadata
describing the functionality provided by the component (e.g., a name and description of the component
and its parameters), and platform-specific metadata (e.g., the base Docker container to use, which
software packages are required by the component). Optionally, the quality of the component can be
improved by defining one or more unit tests with which the component functionality can be tested. B:
Viash allows transforming a given config to a variety of different outputs. C: Viash supports robust
workflow development by allowing users to build their component as a standalone executable (with
auto-generated CLI), build a Docker image to run the script inside, or turn the component into a
standalone Nextflow module or workflow. If unit tests were defined, Viash can also run all of the unit
tests and provide users with a report.

One major benefit of using code regeneration is that best practices in workflow development
can automatically be applied, whereas otherwise this would be left up to the developer to
develop and maintain. For instance, all standalone executables, Nextflow modules, and Docker
images are automatically versioned. When parsing command-line arguments, checking for the
availability of required parameters, the existence of required input files, or the type-checking of
command-line arguments is also automated. Another example is helper functions for installing
software through tools such as apt, apk, yum, pip, or R devtools, as these sometimes require
additional pre-install commands to update package registries or post-install commands to clean
up the installation cache to reduce image size of the resulting image. Here, Viash could be the
technical basis for a community of people committed to sharing components that everybody
can benefit from.

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

3

https://doi.org/10.21105/joss.06089

Prototyping and testing
viash run config.vsh.yaml -- \
 --help

Display CLI help page.
(Auto-generated from config file)

viash run config.vsh.yaml -- \
 -i in.txt -o out.txt

Run a component.
(CLI auto-generated from config file)

viash run config.vsh.yaml \
 -p native -- <args>

Run a component natively.

viash run config.vsh.yaml \
 -p docker -- <args>

Run a component inside a Docker.
(Input files mounted automatically)

Building and deploying
viash build config.vsh.yaml \
 -p docker -o bin

Build a component into a
containerised standalone executable.

Show help page (same as above)

bin/method -i in.txt -o out.txt Run a component (same as above)

viash build config.vsh.yaml \
 -p nextflow -o modules

Build a component into a
standalone Nextflow module

Releasing and maintaining
viash ns build Build all components under src/

viash ns test Test all components under src/

bin/method --help

Developing modular pipeline components with Viash : : CHEAT SHEET

Common commands during the development cycleExample Viash config (config.vsh.yaml)

viash test config.vsh.yaml Run unit tests and display results.

viash run config.vsh.yaml \
 -p docker -- ---dockerfile

View the Dockerfile used by Viash to build
the Docker container.

viash run config.vsh.yaml \
 -p docker -- ---setup build

Rebuild a Docker container from scratch.

Docker-specific commands

functionality:
 name: mycomponent
 description: |
 A useful description of the functionality
 provided by this component.
 usage: mycomponent --input foo.txt --output bar.txt
 arguments:
 - name: "--input"
 alternatives: ["-i"]
 type: file
 description: Input text file.
 - name: "--output"
 alternatives: ["-o"]
 type: file
 direction: output
 resources:
 - type: python_script
 path: script.py
 tests:
 - type: python_script
 path: test.py
platforms:
 - type: docker
 image: "python:3.8"
 setup: [...] # further customisation of container
 - type: native
 - type: nextflow

Example main script (script.py)
VIASH START
this codeblock is for debugging purposes and
is removed by Viash at runtime.
par = {'input': 'debugging.txt', 'output': 'out.txt'}
VIASH END

do something with par dict
print(f"Input: {par['input']}")
print(f"Output: {par['output']}")

Viash
from scripts to pipelines

Figure 2: Cheat sheet for developing modular workflow components with Viash, including a sample Viash
component (left) and common commands used throughout the various stages of a development cycle
(right).

State of the field
The realm of bioinformatics workflow management is evolving rapidly, with numerous frame-
works and portability solutions emerging to address the escalating complexity and scale of
data processing (Wratten et al., 2021). Viash positions itself uniquely in this landscape as a
meta-framework, focusing on the creation of portable workflow modules.

Workflow frameworks can be broadly categorised into three broad categories: graphical,
programmatic, and specification-based types. Graphical workflow frameworks such as Galaxy
(Goecks et al., 2010) and KNIME (Fillbrunn et al., 2017) are user-friendly for non-coders, while
programmatic workflow frameworks such as Nextflow (Di Tommaso et al., 2017), Snakemake
(Köster & Rahmann, 2012), and WDL (https://openwdl.org) offer a DSL or programming
library for developers. Specification-based workflow frameworks such as CWL (Crusoe et
al., 2022) lie somewhere in between. These allow one to describe and execute workflows
with specification files (e.g., in YAML), and these specification files can be constructed using
graphical or programmatic interfaces.

Portability solutions are critical for ensuring reproducibility. These can be divided into package
managers like Conda for automated installation of versioned software, and containerization
tools like Docker (https://www.docker.com) and Podman (Heon et al., 2018), which package
and distribute software dependencies in a self-contained and platform-independent manner.

Viash’s role in this landscape is to bridge these diverse tools, enabling more efficient and
collaborative development in bioinformatics workflows.

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

4

https://openwdl.org
https://www.docker.com
https://doi.org/10.21105/joss.06089

Applications in bioinformatics
Ultimately, Viash aims to support pan-organisational and interdisciplinary research projects by
simplifying collaborative development and maintenance of (complex) workflows. While Viash is
generally applicable to any field where scalable and reproducible data processing workflows are
needed, one field where it is particularly useful is in bioinformatics since it supports most of
the commonly used technologies in this field, namely Bash, Python, R, Docker, and Nextflow.

The NeurIPS2021 competition organised by OpenProblems demonstrates the practical value
of Viash (Luecken et al., 2021). As part of the preparation for the competition, a pilot
benchmark was implemented to evaluate and compare the performance of a few baseline
methods (Figure 3A). By pre-defining the input-output interfaces of several types of components
(e.g., dataset loaders, baseline methods, control methods, metrics), developers from different
organisations across the globe could easily contribute Viash components to the workflow
(Figure 3B). Since Viash automatically generates Docker containers and Nextflow workflows
from the metadata provided by component developers, developers could contribute components
whilst making use of their programming environment of choice without needing to have any
expert knowledge of Nextflow or Amazon EC2. Thanks to the modularity of Viash components,
the same components used in running a pilot benchmark are also used by the evaluation worker
of the competition website itself. As such, the pilot benchmark also serves as an integration
test of the evaluation worker.

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

5

https://doi.org/10.21105/joss.06089

A

Raw gene
expression

Raw
ATAC/ADT

Dataset
Processor

Pre-processed
gene expression

Pre-processed
ATAC/ADT

Dataset
Censor

Censored input
file(s)Solution

Prediction

Metric

Score(s)

Dataset
Loader

Task-
specific

Baseline
Method

Control
Method+/-

=
Viash

component

h5ad

=
AnnData

file

=
Pipeline

logic

B

Dataset processor

Dataset loader

Dataset censor

Baseline method

Control method

Metric

Report

Nextflow pipeline

Python

Bash

R

O
th

er

CZ
 B

io
hu

b
Da

ta
 In

tu
iti

ve
ET

H
Zu

ric
h

Gh
en

t U
ni

ve
rs

ity
He

lm
ho

ltz
 C

M
Ya

le
 U

ni
ve

rs
ity

+/- +/-

C

Figure 3: A recent NeurIPS competition for multimodal data integration (Luecken et al., 2021)
demonstrates the practical value of Viash by using Bash, R, Python, Docker, Nextflow, Viash, and
Amazon EC2 as core technologies to run a pilot benchmark. A: The pilot benchmark workflow consists of
several types of components, each of which had strict predefined input-output interfaces. B: Comparing
which organisations contributed one or more Viash components to the workflow demonstrates that Viash
allows multiple organisations to participate in developing a workflow collaboratively. Developers are
encouraged to implement components in their preferred scripting language. Thanks to the modularity
provided by Viash, sewing together multiple components into a Nextflow workflow can be left up to a few
developers, without requiring all collaborators to have expert knowledge regarding infrastructure-specific
technologies. Note: this visualisation pertains to one aspect of organising the NeurIPS competition, and
does not at all reflect the overall efforts made by any party.

Discussion
Viash is under active development. Active areas of development include expanded compatibility
between Viash and other technologies (i.e., additional scripting languages, containerisation
frameworks, and workflow frameworks), and ease-of-use functionality for developing and
managing large catalogues of Viash components (e.g., simplified continuous integration,
allowing project-wide settings, automating versioned releases).

We appreciate and encourage contributions to or extensions of Viash. All source code is
available under a GPL-3 licence on Github at github.com/viash-io/viash. Extensive user
documentation is available at viash.io. Requests for support or expanded functionality can be
addressed to the corresponding authors.

References
Amezquita, R. A., Lun, A. T. L., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Marini,

F., Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M. L.,

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

6

https://github.com/viash-io/viash
https://viash.io
https://doi.org/10.21105/joss.06089

Huber, W., Morgan, M., Gottardo, R., & Hicks, S. C. (2019). Orchestrating single-cell
analysis with bioconductor. Nature Methods, 17(2), 137–145. https://doi.org/10.1038/
s41592-019-0654-x

Crusoe, M. R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N., Ménager, H., Soiland-
Reyes, S., Gavrilović, B., Goble, C., & Community, T. C. (2022). Methods included:
Standardizing computational reuse and portability with the common workflow language.
Communications of the ACM, 65(6), 54–63. https://doi.org/10.1145/3486897

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C.
(2017). Nextflow enables reproducible computational workflows. Nature Biotechnology,
35(4), 316–319. https://doi.org/10.1038/nbt.3820

Ewels, P. A., Peltzer, A., Fillinger, S., Patel, H., Alneberg, J., Wilm, A., Garcia, M. U.,
Di Tommaso, P., & Nahnsen, S. (2020). The nf-core framework for community-curated
bioinformatics pipelines. Nature Biotechnology, 38(3), 276–278. https://doi.org/10.1038/
s41587-020-0439-x

Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G. A., & Berthold, M. R. (2017).
KNIME for reproducible cross-domain analysis of life science data. Journal of Biotechnology,
261, 149–156. https://doi.org/10.1016/j.jbiotec.2017.07.028

Goecks, J., Nekrutenko, A., Taylor, J., & Galaxy Team, T. (2010). Galaxy: A comprehensive
approach for supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biology, 11(8), R86. https://doi.org/10.1186/gb-2010-11-8-r86

Heon, M. et. al, Walsh, D., Baude, B., Mohnani, U., Cui, A., Sweeney, T., Scrivano,
G., Evich, C., Rothberg, V., Trmač, M., Honce, J., Wang, Q., Mandvekar, L., Reber,
A., Santiago, E., Grunert, S., Dahyabhai, N., Bjorklund, A., Kushwaha, K., … Podman
Community. (2018). Podman - : A tool for managing OCI containers and pods. Zenodo.
https://doi.org/10.5281/ZENODO.4735634

Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., Lücken, M. D.,
Strobl, D. C., Henao, J., Curion, F., Aliee, H., Ansari, M., Badia-i-Mompel, P., Büttner,
M., Dann, E., Dimitrov, D., Dony, L., Frishberg, A., He, D., … Theis, F. J. (2023). Best
practices for single-cell analysis across modalities. Nature Reviews Genetics, 24(8), 550–572.
https://doi.org/10.1038/s41576-023-00586-w

Köster, J., & Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics, 28(19), 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Luecken, M. D., Burkhardt, D. B., Cannoodt, R., Lance, C., Agrawal, A., Aliee, H., Chen,
A. T., Deconinck, L., Detweiler, A. M., Granados, A. A., Huynh, S., Isacco, L., Kim, Y.
J., Klein, D., KUMAR, B. D., Kuppasani, S., Lickert, H., McGeever, A., Mekonen, H., …
Bloom, J. M. (2021). A sandbox for prediction and integration of DNA, RNA, and proteins
in single cells. Thirty-Fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2). https://openreview.net/forum?id=gN35BGa1Rt

Luecken, M. D., & Theis, F. J. (2019). Current best practices in single‐cell RNA‐seq analysis:
A tutorial. Molecular Systems Biology, 15(6). https://doi.org/10.15252/msb.20188746

Wratten, L., Wilm, A., & Göke, J. (2021). Reproducible, scalable, and shareable analysis
pipelines with bioinformatics workflow managers. Nature Methods, 18(10), 1161–1168.
https://doi.org/10.1038/s41592-021-01254-9

Cannoodt et al. (2024). Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 9(93), 6089.
https://doi.org/10.21105/joss.06089.

7

https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1145/3486897
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1016/j.jbiotec.2017.07.028
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.5281/ZENODO.4735634
https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1093/bioinformatics/bts480
https://openreview.net/forum?id=gN35BGa1Rt
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.21105/joss.06089

	Abstract
	Statement of Need
	Core features and functionality
	State of the field
	Applications in bioinformatics
	Discussion
	References

