
PDOPT: A Python library for Probabilistic Design
space exploration and OPTimisation
Andrea Spinelli 1¶ and Timoleon Kipouros 1

1 Centre for Propulsion and Thermal Power, Cranfield University, MK430AL, UK ¶ Corresponding author
DOI: 10.21105/joss.06110

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @e-dub
• @jbussemaker

Submitted: 23 October 2023
Published: 05 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Contemporary engineering design is characterised by products and systems with increasing
complexity coupled with tighter requirements and tolerances. This leads to high epistemic
uncertainty due to numerous possible configurations and a high number of design parameters.
Set-Based Design is a methodology capable of handling these design problems, by exploring
and evaluating as many alternatives as possible, before committing to a specific solution.

The Python package PDOPT aims to provide this capability without the high computational
cost associated with the factorial-based design of experiments methods. Additionally, PDOPT
performs the requirement mapping without explicit rule definition. Instead, it utilizes a
probabilistic machine learning model to identify the areas of the design space most promising
for user-provided requirements. This yields a plethora of feasible design points, assisting
designers in understanding the system behaviour and selecting the desired configurations for
further development.

State of the field
Engineering design is a process where quantitative and qualitative needs are transformed
into a set of specifications (e.g., geometry, materials, component list) such that they can be
sufficiently satisfied. The procedure involves performing several analyses of the system under
design through suitable modelling tools, which map the design parameters to the quantified
needs, and carrying out decisions to narrow and identify the range of desirable parameters. To
aid this procedure, the designer relies on computer simulations through optimisation methods
or the design of experiments in the design space.

Historically, optimisation has been used in the late stages of design, to refine a solution already
in the ballpark of the requirements. However, with the development of Multi-disciplinary
Optimisation (MDO), there has been increasing interest in bringing optimisation in earlier
stages of the design process. Searching for optimal designs with concurrent analysis of different
disciplines allows one to obtain better results than with sequential optimisation alone, reducing
the time and cost of the development cycle (Martins & Lambe, 2013). In the conceptual phase,
optimisation can be employed to understand which combination of input design parameters
enables to satisfy the requirements. The algorithm acts by changing the input quantities
iteratively to find the ideal combination(s) that minimise/maximise quantities of interest (often
performance targets) without violating the problem constraints (which can be technological,
geometrical, economical, and so on). Population-based solvers such as Genetic Algorithm (K.
Deb et al., 2002) or Particle Swarm (Kennedy & Eberhart, 1995) are best suited for this task
as they evolve multiple design points in parallel, rather than iteratively improving a single
solution (Kalyanmoy Deb, 2008). The result is a family of points, covering the design space
which are optimal. Surrogate modelling (Forrester & Keane, 2009) is often introduced to
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reduce the computational cost of each functional evaluation and correct with high-fidelity data
fast low-fidelity models often used in the conceptual design phase (Kontogiannis et al., 2020).

Software libraries developed for optimisation in Python are the OpenMDAO framework, which
focuses on multi-disciplinary optimisation (Gray et al., 2019), the Object-Oriented pyOpt

(Perez et al., 2012), the DEAP evolutionary optimisation library (Fortin et al., 2012), and pymoo

multi-objective optimisation library (Blank & Deb, 2020). These libraries are open-source and
general-purpose.

While effective in finding the desired set of design points, optimisation methods require to
properly set up the problem to deliver meaningful results. This may be difficult at the beginning
of the design procedure, as needs may be not fully defined, and the behaviour of the model
not be fully understood. Design of Experiments (DoE) methods can assist in initiating this
process through sampling and evaluation of the design space to obtain an understanding of the
system response. Traditionally this approach is carried out through factorial sampling, where all
possible combinations of extreme parameter values are tested (Montgomery, 2019). A response
surface would then be built for analysing the response of the system inside the interval. This
approach is feasible when the number of variables is low, as the number of experiments to be
carried out grows exponentially. In the computational engineering field, quasi-random sampling
is preferred, with Latin Hypercube sampling and Sobol sequences being most used (Yondo
et al., 2018). These allow for training surrogate models for design exploration with a lower
number of points in cases where factorial design would require an unfeasible amount.

Currently there is not a specific Python library to perform DoE-based design space exploration.
Unlike an optimisation problem, there is no fixed procedure to obtain the mapping of the
requirements on the input parameters. The designer is free to play with the model, with the
aid of visualisation methods to understand the problem at hand. Examples of libraries useful
for performing DoE sampling are the Quasi-Monte Carlo sampling module scipy.qmc and
the Surrogate Modeling Toolbox (SMT) (Saves et al., 2024). SMT also provides methods
to build response surfaces from the sampled data, using both radial-basis function (RBF)
interpolation and Kriging (Gaussian Process Regression). Alternatively, scipy provides a RBF
interpolation function in scipy.interpolate.Rbf, while Kriging models can be built using
scikit-learn.gaussian_process module (Pedregosa et al., 2011) or with the library GPpy

(GPy, since 2012).
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Figure 1: Comparison between Set-Based Design and traditional design.

The framework presented in this paper attempts to combine the two approaches in a single
framework through the application of the principles of Set-Based Design (SBD) and Bayesian
probability. SBD is a design practice that focuses on narrowing down the input design space
by eliminating the candidate designs that do not satisfy the needs and requirements (Singer et
al., 2009). It was originally developed by Ward (Ward & Seering, 1993) and it is commonly
associated with the Toyota Production System (Sobek & Ward, 1996). Figure 1 compares
SBD with the traditional iterative design process. The traditional method selects an initial
candidate design to be refined through iterations as the problem is better understood over
time. This approach is suited mainly for evolutionary designs, where the starting point is often
already in the ballpark of the requirements. However, if the initial point is not close to the
desired solution, local adjustements may not be enough to bring it to the required satisfaction,
prompting a complete rework of the design. The SBD approach mitigates this by analysing
many candidates in parallel and eliminating those who are found to be unfeasible, gradually
reducing the pool to the desired solution. This approach has been shown to produce a more
robust design cycle (McKenney et al., 2011).

SBD is used in PDOPT for performing an initial assesment of the design space and restriction to
the most promising portions, which are then evaluated with local MDO problems. Georgiades
previously developed a framework combining SBD and MDO named ADOPT (Georgiades et al.,
2019), of which PDOPT is a development. The difference is in the set-elimination process. ADOPT
used expert-defined rules that mapped the input parameters to the quantities of interest. This
approach is robust in case of well understood design problems, but limited for unconventional
systems, of which there is no best practices to draw from. PDOPT overcomes this limitation by
applying Bayesian probability (Bernardo & Smith, 2009) as a selection criterion and assuming
the underlying MDO model is a source of knowledge for the set elimination process. By casting
the requirements in a probabilistic statement (i.e., “What is the probability it is satisfied?”)
and sampling in each set using surrogate models, it is possible to estimate the likelihood a set
can satisfy all the requirements simultaneously and, therefore, worthy of further analysis. The
advantage of this methodology is not having to rely on additional hardcoded rules on top of
the implicit assumptions in the MDO model.
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Statement of need
PDOPT, short for Probabilistic Design and OPTimisation, is a Python package for design space
exploration of systems under design. It implements a set-based approach for mapping the
requirements to the design space, using a probabilistic surrogate model trained on the provided
design model. This procedure ensures to identification of the best candidate areas of the design
space with the minimum number of assumptions of the design of the system. The framework is
designed to handle both continous parameters (represented as ranges) and discrete parameters
(represented as a list of integers to be interpreted by the evaluation function).

The API of PDOPT was designed as a library with class-based interfaces between the components
of the framework. This ensures both flexibility and transparency, as the user can inspect the
main data structure between the phases of the framework. A full PDOPT analysis consists of
two phases: the Exploration phase and the Search phase, shown in Figure 2.

The first phase surveys the design space to isolate the areas that are most likely to satisfy the
constraints over the quantities of interest of the model. It does not seek to identify individual
design points, but looks at “sets” (i.e., portions of the design space defined by parameter
ranges) such to already eliminate candidates that would not produce feasible design points.
The second phase introduces a multi-objective optimisation problem in each surviving set for
recovering the individual design points. These are run with the input parameters bounded
by the limits of each set, thus thoroughly finding the local optimal designs, satisfying the
constraints. The result is multiple local Pareto fronts, one for each set.

Figure 2: Overall architecture of PDOPT.

The fundamental idea behind the Exploration phase is to map the requirements without rule
elicitation, instead relying on the design model provided for the Search phase. The assumption
is the design model contains implicitly the knowledge necessary to map the quantities of
interest to the input parameters. The mapping procedure mathematically is equivalent to
identifying the domain where each constraint is true. The edge of this domain is the decision
boundary of that constraint (Figure 3).
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Figure 3: Decision boundary and domain of a generic requirement.

The set-based procedure consists of breaking down the design space into discrete portions
to be evaluated. Sets crossed by the decision boundary are difficult to evaluate in a boolean
way. This is avoided by reformulating the statement (i.e., the inequality must be true) as
a probabilistic one to be interpreted in a Bayesian way (i.e., “What is the probability the
inequality is true?”). This allows a fuzzy margin around the decision boundary and enables to
inclusion of sets that would otherwise be hard to select or discard, as shown in Figure 4 and
Figure 5.

Figure 4: Probabilistic decision boundary.
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Figure 5: Probabilistic decision boundary and set boundaries.

Casting the requirements in probabilistic form also enables requirement mapping without the
need for explicit rules. Instead, by sampling the set and evaluating the points with a Gaussian
Process Regressor, it is possible to estimate the probability of requirement satisfaction. Each
evaluated point has a mean and variance of the quantity of interest subject to the constraint.
The k-th point probability of satisfaction of the i-th requirement is then calculated as:

𝑃 𝑘(𝑦𝑖 < 𝑔𝑖) = Φ(𝑔𝑖 − 𝜇𝑘
𝑖

𝜎𝑘
𝑖

)

where 𝑔𝑖 is the value of the value of the decision boundary. This calculation is visualised in
Figure 6.

Figure 6: Probability of satisfying a constraint 𝑔𝑖 for a sampled point 𝑋𝑘.

The probability of the whole set is calculated by counting how many points were able to satisfy
the requirement over the total number of samples:

𝑃𝑖 =
𝑛𝑖,𝑠𝑎𝑡

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
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Multiple requirements are aggregated by assuming conditional independence, thus multiplying
them together. Sets are then discarded if their overall probability is lower than the threshold
for acceptance. Surviving sets are passed to the Search phase for local MDO. The optimisation
algorithm adopted is the U-NSGA3 (Seada & Deb, 2016) implementation in pymoo, a gradient-
free genetic algorithm with the flexibility of handling from single to many-objective problems.
Furthermore it is capable of handling a non-smooth evaluation function, assuming the simulation
model would capture any exceptions in its execution. The framework is intended to be used
for large number of input paramters, with the option to run locally trained surrogate models
to speed up the optimisation analysis.

The design points obtained from the local MDO problems yield both the global Pareto front
and the feasible suboptimal points. Interactive visualisation tools can be used to analyse
the results and proceed with design selection. Thanks to the probabilistic mapping of the
requirements to the design space, the computational cost for design space exploration can be
reduced by up to 80% (Spinelli, Anderson, et al., 2022), as the unfeasible sets are evaluated
with the multi-disciplinary optimisation code.

PDOPT is intended to be used by researchers and engineers alike in developing complex engineering
systems. It has been developed within the FutPrint50 project (FutPrInt50, 2020) and released
as open-source software under the MIT license. The software has been used in several scientific
publications regarding the design of hybrid-electric aircraft (Spinelli, Enalou, et al., 2022), and
the effects of operating conditions (Spinelli, Krupa, Kipouros, Berseneff, et al., 2023) and
technological uncertainty (Spinelli, Krupa, & Kipouros, 2023) on the design.

Availability
PDOPT can be found on GitHub (Spinelli, 2023) and is compatible with the latest Python release.
The release includes a PDF manual as a user guide and API reference. An example test set-up
is also provided in the GitHub repository. Dependencies include the standard Python scientific
stack (numpy, scipy, pandas, matplotlib) with the addition of the scikit-learn machine
learning library (Pedregosa et al., 2011), the pymoo multi-objective optimisation framework
(Blank & Deb, 2020), and the joblib parallelisation library. As an optional feature, plotly
can be installed to take advantage of the prototypical decision-making environment packaged
with the library.
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