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Summary
DICaugment is a Python package based on the popular image augmentation library Albu-
mentations (Buslaev et al., 2020), with specific enhancements for working with volumetric
medical images, such as Computed Tomography (CT) scans. This package provides a collec-
tion of over 40 powerful augmentation techniques that can be seamlessly integrated into a
machine-learning pipeline to augment volumetric medical images. The package was designed
to incorporate the image acquisition metadata available in DICOM headers, allowing users to
create transformations that are consistent with those acquisition parameters for specific CT
systems and reconstruction kernels. DICaugment extends the success of the Albumentations
library for two-dimensional (2D) image augmentation to the realm of three-dimensional (3D)
images, offering a comprehensive set of transformations and augmentations, ranging from
pixel-level intensity transformations to spatial transformations, all designed and optimized for
3D data.

Statement of need
The recent advancements in machine learning have significantly improved the performance of
deep learning models across various domains and applications. However, the success of these
models still largely relies on a significant amount of labeled and annotated training data. This
is a particular limitation in medical imaging applications where imaging data annotation and
the establishment of a reliable reference standard is expensive, time-consuming, and typically
requires clinician expertise. DICaugment supports the efficient use of available labeled and
annotated data by providing augmentations that are consistent with preexisting imaging data
annotations available in the form of masks, bounding boxes, and keypoints.

Considering the distinct geometric and operational factors inherent to 3D images, several
toolkits have been developed to perform transformations in the 3D space domain; SimpleITK
(Yaniv et al., 2017) provides a collection of spatial transformations, including linear and
deformable geometric transformations, as well as intensity-based transformations such as linear,
non-linear, and histogram-based intensity adjustments. In addition to supporting various
medical imaging tasks, augmentation methods in packages such as TorchIO (Pérez-García et
al., 2021) and MONAI (Cardoso et al., 2022) were designed to seamlessly integrate into popular
deep learning frameworks such as PyTorch, providing a convenient interface for integration
within deep learning pipelines. Packages such as Volumentations (Solovyev et al., 2022) were
uniquely developed for the purpose of augmenting 3D volumetric images, offering specialized
transformations for enriching 3D imaging datasets during the training of deep neural networks.

DICaugment offers a variety of transformations including geometric and intensity transforma-
tions, spatial distortions, and physics-based augmentations designed to enhance the diversity
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of 3D image data. A subset of these transformations includes blurring techniques, such as
median blur and Gaussian blur, that must utilize local spatial operations such as convolution
to achieve the desired output. Notably, DICaugment offers a unique capability by allowing
users to choose between a 2D by-slice operation or a full 3D operation when applying different
blurring augmentations in a pipeline. This flexibility caters to a variety of use cases and ensures
that the blurring effects can be consistent across an entire 3D volume.

Additionally, DICaugment enables users to construct custom augmentation pipelines with
control over each individual transformation. Mimicking the Albumentations (Buslaev et al.,
2020) package, DICaugment utilizes the concept of augmentation probabilities. This feature
allows users to assign a probability of occurrence to each transformation within a pipeline,
enabling selective and stochastic augmentation of a dataset. By specifying different probabilities
for various transformations, users can create diverse and balanced augmented datasets that
reflect real-world variability. This level of control ensures that specific augmentations, whether it
be intensity adjustments or geometric transformations, are applied with user-defined frequencies,
therefore tailoring the augmentation process to the characteristics and use case of the dataset.

Compared to other augmentation packages, DICaugment offers a unique advantage through
the addition of physics-based augmentations that leverage metadata from DICOM files in CT
imaging. During the reconstruction process of CT images, different manufacturers employ
different reconstruction kernels, leading to distinct noise textures in the resulting images often
characterized by the Noise Power Spectrum (NPS) (Solomon et al., 2012). DICaugment
utilizes the NPS profiles from the specific reconstruction kernel to generate noisy images
that are consistent with the imaging acquisition and reconstruction parameters (Tward &
Siewerdsen, 2008) from the system and acquisition parameters used to acquire the original CT
dataset. To illustrate, we computed the NPS obtained from the noise insertion transformations
offered by DICaugment and compared it against simple white Gaussian noise, which is a
common noise insertion method for data augmentation (e.g., MONAI (Cardoso et al., 2022)
and Volumentations (Solovyev et al., 2022)).

For this experiment, we utilized a water phantom (Phantom Testing: CT, n.d.) scanned by a
Siemens Somatom Definition Flash CT scanner with an exposure of 240 mAs, 120 kVp, and
reconstructed with a B30f reconstruction kernel at 0.48 mm in-plane pixel spacing. The 2D
NPS was estimated using the method proposed by Solomon et al. (Solomon et al., 2012); from
the water phantom, we extracted a uniform volumetric region of 128 × 128 × 70 dimensions
and computed the 2D NPS of each slice by using:

𝑁𝑃𝑆(𝑢, 𝑣) =
𝑑𝑥𝑑𝑦
𝑁𝑥𝑁𝑦

. ∣ 𝐹 [𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)] ∣2 (1)

In Equation 1, 𝑢 and 𝑣 represent spatial frequency (mm−1) in the 𝑥 and 𝑦 directions, respectively,
𝑑𝑥 and 𝑑𝑦 are pixel size in millimeter space, 𝑁𝑥 and 𝑁𝑦 are the number of pixels in the 𝑥 and
𝑦 directions within the selected ROI (i.e. 128 × 128 px), 𝐹 denotes the 2D Fourier transform,
𝐼(𝑥, 𝑦) is the pixel density of the uniform region in Hounsfield Unit at position (𝑥, 𝑦) and 𝑃 is
the second order polynomial fit of 𝐼. Each estimated 2D NPS within the volumetric ROI is
normalized by its integral across all frequencies and converted into a one-dimensional radial
representation, 𝑟 =

√
𝑢2 + 𝑣2. The final normalized NPS (nNPS) was obtained by averaging

the radial NPS curves across 70 slices within the volumetric image.
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Figure 1: (a) Water phantom scanned by a Siemens Somatom Definition Flash CT scanner with imaging
parameters set at 240 mAs, 120 kVP, and reconstructed with a B30f reconstruction kernel at 0.48 mm
in-plane pixel spacing. The noise magnitude is computed as 9.46 Hounsfield units (HU). (b) Increasing
the noise magnitude by adding white Gaussian noise, resulting in a noisy image with a magnitude of 16.01
HU. (c) Increasing the noise magnitude using DICaugment, resulting in a noise image with a magnitude
of 16.08 HU. Figures (d), (e), and (f) illustrate the benefits of DICaugment in offering augmentations
consistent with the imaging parameters, demonstrated in terms of the Noise Power Spectrum (NPS) of
the augmented image (i.e., inserting Gaussian noise produces a high-frequency tail in the NPS that is
inconsistent with that of the Siemens scanner while our noise insertion method yields a shape in the NPS
that is consistent with that of the Siemens scanner).

Figure 1(a) illustrates a slice of the noise region extracted from the uniform water phantom
along with the corresponding estimation of the normalized Noise Power Spectrum (nNPS).
Figure 1(b) illustrates the outcome of noise insertion using white Gaussian noise, a common
approach for noise insertion (Cardoso et al., 2022), demonstrating the lack of correlation
between adjacent pixels. Figure 1(c) shows the outcome of noise insertion by DICaugment.
Despite the increased magnitude of the noise, the correlation among adjacent pixels remained
essentially unchanged, as evident in the normalized Noise Power Spectrum (nNPS) shown
in Figure 1(f). This shows that a decreased CT exposure can be simulated through our
augmentation process for specific CT imaging systems and kernels.
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