
PARMESAN: Meteorological Timeseries and
Turbulence Analysis Backed by Symbolic Mathematics
Yann Georg Büchau 1¶, Hasan Mashni1, Matteo Bramati1, Vasileios
Savvakis 1, Ines Schäfer1, Saskia Jung1, Gabriela Miranda-Garcia 1,
Daniel Hardt 2, and Jens Bange 1

1 Eberhard Karls Universität Tübingen, Germany 2 Akaflieg Braunschweig e.V., Braunschweig, Germany
¶ Corresponding author

DOI: 10.21105/joss.06127

Software
• Review
• Repository
• Archive

Editor: Martin Fleischmann
Reviewers:

• @kgoebber
• @arbennett

Submitted: 17 September 2023
Published: 09 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PARMESAN (the Python Atmospheric Research Package for MEteorological TimeSeries and
Turbulence ANalysis) is a Python package providing common functionality for atmospheric
scientists doing time series or turbulence analysis. Several meteorological quantities such
as potential temperature, various humidity measures, gas concentrations, wind speed and
direction, turbulence and stability parameters can be calculated. Furthermore, signal processing
functionality such as properly normed variance spectra for frequency analysis is available. In
contrast to existing packages with similar goals, its routines for physical quantities are derived
from symbolic mathematical expressions, enabling inspection, automatic rearrangement, reuse
and recombination of the underlying equations. Building on this, PARMESAN’s functions as
well as their comprehensive parameter documentation are mostly auto-generated, minimizing
human error and effort. In addition, sensitivity/error propagation analysis is possible as
mathematical operations like derivations can be applied to the underlying equations. Physical
consistency in terms of units and value domains are transparently ensured for PARMESAN
functions. PARMESAN’s approach can be reused to simplify implementation of robust routines
in other fields of physics.

Statement of need
The need to assert properly balanced physical units right from within running programs and
models has been recognised for a long time now (Chizeck et al., 2009; Cooper & McKeever,
2008). Unit conversion errors in science and engineering have caused costly system failures
such as the NASA Mars Climate Orbiter crash in 1999 (NASA, 1999).

Nowadays, the Python ecosystem comprises many packages that ease specific tasks when
performing physical calculations: numpy (Harris et al., 2020) and scipy (Virtanen et al.,
2020) provide efficient numerical routines, pandas (The pandas development team, 2023) and
xarray (Hoyer & Hamman, 2017) provide structures to read, write and aggregate data, pint
(Grecco & Chéron, 2023) handles physical units and the uncertainties package (Lebigot,
2023) simplifies linear error propagation. Partly based on those, collections of routines for
atmospheric science exist such as metpy (May et al., 2022), iris (Met Office, 2010 - 2023)
and aoslib/PyAOS (PyAOS, 2023). However these focus more on gridded, spatial data
which is common in modelling and remote sensing and have little functionality for turbulence
analysis. Turbulence plays an important role in atmospheric exchange processes, especially in
the planetary boundary layer (Stull, 1988). It is a statistical process and thus mostly quantified
through high-resolution in-situ measurement techniques (Foken, 2021). metpy and iris can
both handle units and require the user to explicitly specify them. Their physical quantities are
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calculated using hard-coded expressions. In contrast, the atmos package (McGibbon, 2023)
has implemented an equation solving system for more flexible reusability and less hard-coding
of relationships between quantities. Its development seems to have stalled since 2020, though.
None of the above packages have a mechanism for transparently checking that input and
output values are within reasonable physical bounds.

PARMESAN addresses the aforementioned gaps by providing functions for meteorological
quantities that are backed by symbolic mathematical expressions employing SymPy (Meurer
et al., 2017), a powerful computer algebra system written purely in Python. Inputs and
outputs are checked for and potentially converted to correct units while asserting that the
physical domains are not exceeded. It can rearrange its equations and thus flexibly increase
the number of available functions. PARMESAN has already been used successfully in Büchau
et al. (2022), Büchau et al. (2023), Wüsteney (2023) and Herrmann (2023) for data analysis
of meteorological measurements.

Structure
Functions for physical quantities in PARMESAN are based on symbolic mathematical equa-
tions created using SymPy (Meurer et al., 2017). PARMESAN defines a descriptive list of
symbols (i.e. variables and constants, Figure 1) and relates them to form the common laws of
thermodynamics, parametrisations and definitions used in atmospheric science.

Figure 1: Excerpt of auto-generated symbol list in parmesan.symbols. Symbols have metadata such as
descriptions, units and default values attached. For readability, they can be referred to with different
variable names, which are also available as parameter aliases when calling functions in PARMESAN.

This approach has many advantages over the traditional method of hard-coding mathematical
operations between function inputs using language-specific constructs. First of all, information
about the mathematical relationship between quantities is not lost, but can instead be
queried and reused. SymPy equations can be rearranged and recombined to generate new
expressions, enabling the generation of many specific functions from a set of base equations.
Additionally, SymPy expressions are translatable into code for numerous programming languages.
PARMESAN uses this mechanism to turn its equations into executable Python functions that use
the efficient numpy package internally (Harris et al., 2020), so no runtime overhead is introduced
and array inputs and outputs are supported. Symbolic expressions are automatically simplified
and terms cancelled accordingly, revealing the set of input parameters an equation really
depends on. This information is then used to automatically generate extensive documentation
for each individual function (Figure 2) - a great benefit for consistency and minimisation of
human effort and oversight in the documentation.
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Creating new functions in or from PARMESAN thus often requires only very few lines of code.
Here is a compacted version of PARMESAN’s function for potential temperature specifically
for dry air:

from parmesan.symbols import * # Import all of PARMESAN's symbols

@from_sympy() # decorator turning SymPy expression into code and documentation

def potential_temperature(): # no arguments necessary, added automatically

return T * (p_ref / p) ** (R_dryair / c_p_dryair)

# SymPy expression - practically equal to typical Python code

In this case, the resulting quantity is derived from the function’s name, documentation is
generated (Figure 2) and the equation is immediately checked for units consistency employing
the pint package (Grecco & Chéron, 2023). Each symbol has metadata attached, such as
a physical unit and a domain (Figure 1). These are available to the resulting function for
assertion, so a PARMESAN function will check and auto-convert input and output units and
issue a warning when unphysical values arise such as negative absolute temperatures:

# Implicit Units

potential_temperature(T=300, p=100000) # K and Pa assumed

# 300.0 K

# Explicit Units

from parmesan.units import units # PARMESAN's predefined units

potential_temperature(T=units.Quantity(20,"°C"), p=950 * units.hPa)

# 297.477188635086 K

# Parameter/Symbol Aliases

potential_temperature(temperature=300, pressure=100000)

# 300.0 K

# Arrays

import numpy as np

potential_temperature(T=300, p=np.array([950,980,1010]) * units.hPa)

# Magnitude: [304.42830151978785 301.7364178157801 299.14844787358106]

# Units: K

# Bounds check

potential_temperature(T=-10, p=1010*units.hPa) # temperature out of bounds

# OutOfBoundsWarning: 1 of 1 input values to potential_temperature for

# argument 'T' are out of bounds defined by 'positive': [-10] at indices [0]

# -9.971614929119369 K

# Units check

potential_temperature(T=300, p=1010*units.degrees) # wrong unit -> error

# DimensionalityError: potential_temperature():

# p=<Quantity(1010, 'degree')> could not be converted to pascal:

# Cannot convert from 'degree' (dimensionless) to 'pascal'

# ([mass] / [length] / [time] ** 2)
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Figure 2: Auto-generated comprehensive parameter documentation and LaTeX-formatted equation for
PARMESAN’s potential_temperature() function to calculate potential temperature from atmospheric
pressure and temperature. Parameter aliases, units, defaults and bounds are taken from PARMESAN’s
symbol library (Figure 1) and used coherently across functions in PARMESAN.

Another benefit of having the underlying symbolic expression for an equation available is
the possibility to do sensitivity analysis. PARMESAN can derive the maximum relative error
Δ𝑦max,rel (Equation 1) for its symbolic functions (Figure 3):

Δ𝑦max(𝑥1,… , 𝑥n) =
𝑛
∑
𝑖=1

∣ 𝜕𝑦
𝜕𝑥𝑖

∣ ⋅ Δ𝑥𝑖max

Δ𝑦max,rel =
Δ𝑦max

𝑦

(1)

The maximum relative error is a conservative estimation method for the propagation of errors
of input quantities 𝑥𝑖 to effective error in the output quantity 𝑦, assuming the most severe
combination of input quantity deviations Δ𝑥𝑖max

. Custom sensitivity analyses can also be
implemented based on PARMESAN’s equations.
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Figure 3: Auto-generated maximum relative error equation (Equation 1) for PARMESAN’s
potential_temperature() function (Figure 2). Symbolic PARMESAN functions automatically have a
sensitivity analysis attached to quantify how a change in input parameters affects the output. In this
case, the maximum expected relative error of potential temperature [%] is the sum of the maximum
relative errors of temperature and pressure [%], with the pressure term scaled by a factor.

PARMESAN can also rearrange its existing equations (Figure 4) for a quantity of interest by
its provided get_function() function:

from parmesan.symbols import *

# get (or rearrange) functions that calculate mixing ratio

mixing_ratio_functions = list(get_function(result=mixing_ratio)

# get (or rearrange) functions that calculate mixing ratio

# from at least temperature and pressure

mixing_ratio_functions = list(get_function(result=mixing_ratio, inputs=(T, p))

The functions found can be called as usual or their underlying equations can be examined
by accessing their .equation attribute. In a Jupyter notebook (Kluyver et al., 2016) the
equations appear as formatted markup similar to what is depicted in Figure 4.

Figure 4: Excerpt of auto-generated humidity equation list in PARMESAN’s humidity module. As the
underlying equations in PARMESAN’s functions are available as symbolic expressions, it can provide
overviews of all related equations.

Besides physical equations, PARMESAN provides tools often needed when analysing timeseries
such as calculating second-order moments, variance spectrum (Figure 5), autocorrelation,
structure function (variogram) and running covariance, e.g. for calculating eddy fluxes (Foken,
2021), backed by the scipy package (Virtanen et al., 2020) for efficient numerics and
matplotlib (Hunter, 2007) for visualisation. PARMESAN integrates with the common pandas
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data analysis framework (The pandas development team, 2023) by adding a .parmesan accessor
to DataFrame and Series objects to apply PARMESAN functions such as a variance spectrum
or autocorrelation directly to them.
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Figure 5: PARMESAN discrete variance_spectrum() of an artificial wind timeseries (random walk
overlayed with 2Hz and 3Hz sine waves). Note how Parseval’s Theorem (Stull, 1988) is correctly fulfilled
as the timeseries variance equals the sum of discrete spectral variances. A Kolmogorov power-law fit
(Ortiz-Suslow & Wang, 2019) was optionally added by PARMESAN.
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